Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 122
Filter
Add more filters










Publication year range
1.
Mol Pharm ; 21(8): 3777-3799, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39038108

ABSTRACT

Central nervous system (CNS) diseases, ranging from brain cancers to neurodegenerative disorders like dementia and acute conditions such as strokes, have been heavily burdening healthcare and have a direct impact on patient quality of life. A significant hurdle in developing effective treatments is the presence of the blood-brain barrier (BBB), a highly selective barrier that prevents most drugs from reaching the brain. The tight junctions and adherens junctions between the endothelial cells and various receptors expressed on the cells make the BBB form a nonfenestrated and highly selective structure that is crucial for brain homeostasis but complicates drug delivery. Nanotechnology offers a novel pathway to circumvent this barrier, with nanoparticles engineered to ferry drugs across the BBB, protect drugs from degradation, and deliver medications to the designated area. After years of development, nanoparticle optimization, including sizes, shapes, surface modifications, and targeting ligands, can enable nanomaterials tailored to specific brain drug delivery settings. Moreover, smart nano drug delivery systems can respond to endogenous and exogenous stimuli that control subsequent drug release. Here, we address the importance of the BBB in brain disease treatment, summarize different delivery routes for brain drug delivery, discuss the cutting-edge nanotechnology-based strategies for brain drug delivery, and further offer valuable insights into how these innovations in nanoparticle technology could revolutionize the treatment of CNS diseases, presenting a promising avenue for noninvasive, targeted therapeutic interventions.


Subject(s)
Blood-Brain Barrier , Brain Diseases , Drug Delivery Systems , Nanoparticles , Nanotechnology , Humans , Blood-Brain Barrier/metabolism , Drug Delivery Systems/methods , Brain Diseases/drug therapy , Nanotechnology/methods , Nanoparticles/chemistry , Animals , Brain/metabolism , Brain/drug effects , Nanoparticle Drug Delivery System/chemistry
3.
Adv Mater ; 36(29): e2314354, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38778446

ABSTRACT

Alzheimer's disease (AD) is the most burdensome aging-associated neurodegenerative disorder, and its treatment encounters numerous failures during drug development. Although there are newly approved in-market ß-amyloid targeting antibody solutions, pathological heterogeneity among patient populations still challenges the treatment outcome. Emerging advances in gene therapies offer opportunities for more precise personalized medicine; while, major obstacles including the pathological heterogeneity among patient populations, the puzzled mechanism for druggable target development, and the precision delivery of functional therapeutic elements across the blood-brain barrier remain and limit the use of gene therapy for central neuronal diseases. Aiming for "precision delivery" challenges, nanomedicine provides versatile platforms that may overcome the targeted delivery challenges for AD gene therapy. In this perspective, to picture a toolbox for AD gene therapy strategy development, the most recent advances from benchtop to clinics are highlighted, possibly available gene therapy targets, tools, and delivery platforms are outlined, their challenges as well as rational design elements are addressed, and perspectives in this promising research field are discussed.


Subject(s)
Alzheimer Disease , Genetic Therapy , Precision Medicine , Alzheimer Disease/therapy , Alzheimer Disease/metabolism , Humans , Genetic Therapy/methods , Animals , Precision Medicine/methods , Nanomedicine/methods , Blood-Brain Barrier/metabolism , Gene Transfer Techniques , Amyloid beta-Peptides/metabolism , Nanoparticles/chemistry
4.
Ecol Evol ; 14(4): e11210, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38571805

ABSTRACT

Clarifying changes in the microbial community in deadwood at different stages of decomposition is crucial for comprehending the role of deadwood in the biogeochemical processes and the sustainability of forest development. However, there have been no reports on the dynamics of microbial community during the decomposition of Pinus massoniana. We used the "space-for-time" substitution to analyze the characteristics of microbial community changes and the key influencing factors in the P. massoniana deadwood during different decomposition stages by 16S and ITS rRNA gene sequencing. The results suggest that the microbial community structure of the early decomposition (decay class I) was significantly different from the other decay classes, while the diversity and richness of the microbial community were the highest in the late decomposition (decay class V). The Linear Discriminant Analysis Effect Size analysis revealed that most bacterial and fungal taxa were significantly enriched in decay classes I and V deadwood. During the initial stages of decomposition, the relative abundance of the bacterial functional group responsible for carbohydrate metabolism was greater than the later stages. As decomposition progressed, the relative abundance of saprophytic fungi gradually decreased, and there was a shift in the comparative abundance of mixed saprophytic-symbiotic fungi from low to high before eventually decreasing. Total organic carbon, total nitrogen, carbon-to-nitrogen ratio, total potassium, total phenol, condensed tannin, lignin, and cellulose were significantly correlated with microbial community structure, with the carbon-to-nitrogen ratio having the greatest effect. Our results indicate that the physicochemical properties of deadwood, microbial community structural composition and functional group changes were related to the decay class, among which the carbon-to-nitrogen ratio may be an important factor affecting the composition and diversity of microbial communities.

5.
Angew Chem Int Ed Engl ; 63(10): e202319700, 2024 03 04.
Article in English | MEDLINE | ID: mdl-38197646

ABSTRACT

Giant heterometallic polyoxometalate (POM) clusters with precise atom structures, flexibly adjustable and abundant active sites are promising for constructing functional nanodrugs. However, current POM drugs are almost vacant in orthotopic brain tumor therapy due to the inability to effectively penetrate the blood-brain barrier (BBB) and low drug activity. Here, we designed the largest (3.0 nm × 6.0 nm) transition-metal-lanthanide co-encapsulated POM cluster {[Ce10 Ag6 (DMEA)(H2 O)27 W22 O70 ][B-α-TeW9 O33 ]9 }2 88- featuring 238 metal centers via synergistic coordination between two geometry-unrestricted Ce3+ and Ag+ linkers with tungsten-oxo cluster fragments. This POM was combined with brain-targeted peptide to prepare a brain-targeted nanodrug that could efficiently traverse BBB and target glioma cells. The Ag+ active centers in the nanodrug specifically activate reactive oxygen species to regulate the apoptosis pathway of glioma cells with a low half-maximal inhibitory concentration (5.66 µM). As the first brain-targeted POM drug, it efficiently prolongs the survival of orthotopic glioma-bearing mice.


Subject(s)
Anions , Brain Neoplasms , Glioma , Polyelectrolytes , Mice , Animals , Glioma/drug therapy , Glioma/pathology , Brain Neoplasms/pathology , Drug Delivery Systems , Blood-Brain Barrier/metabolism
6.
Cancer Cell ; 42(3): 358-377.e8, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38215747

ABSTRACT

The evolutionary trajectory of glioblastoma (GBM) is a multifaceted biological process that extends beyond genetic alterations alone. Here, we perform an integrative proteogenomic analysis of 123 longitudinal glioblastoma pairs and identify a highly proliferative cellular state at diagnosis and replacement by activation of neuronal transition and synaptogenic pathways in recurrent tumors. Proteomic and phosphoproteomic analyses reveal that the molecular transition to neuronal state at recurrence is marked by post-translational activation of the wingless-related integration site (WNT)/ planar cell polarity (PCP) signaling pathway and BRAF protein kinase. Consistently, multi-omic analysis of patient-derived xenograft (PDX) models mirror similar patterns of evolutionary trajectory. Inhibition of B-raf proto-oncogene (BRAF) kinase impairs both neuronal transition and migration capability of recurrent tumor cells, phenotypic hallmarks of post-therapy progression. Combinatorial treatment of temozolomide (TMZ) with BRAF inhibitor, vemurafenib, significantly extends the survival of PDX models. This study provides comprehensive insights into the biological mechanisms of glioblastoma evolution and treatment resistance, highlighting promising therapeutic strategies for clinical intervention.


Subject(s)
Brain Neoplasms , Glioblastoma , Proteogenomics , Animals , Humans , Glioblastoma/genetics , Proto-Oncogene Proteins B-raf , Proteomics , Cell Line, Tumor , Neoplasm Recurrence, Local , Disease Models, Animal , Brain Neoplasms/genetics , Drug Resistance, Neoplasm , Xenograft Model Antitumor Assays
7.
Nat Commun ; 15(1): 705, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38267418

ABSTRACT

Toxic amyloid-beta (Aß) plaque and harmful inflammation are two leading symptoms of Alzheimer's disease (AD). However, precise AD therapy is unrealizable due to the lack of dual-targeting therapy function, poor BBB penetration, and low imaging sensitivity. Here, we design a near-infrared-II aggregation-induced emission (AIE) nanotheranostic for precise AD therapy. The anti-quenching emission at 1350 nm accurately monitors the in vivo BBB penetration and specifically binding of nanotheranostic with plaques. Triggered by reactive oxygen species (ROS), two encapsulated therapeutic-type AIE molecules are controllably released to activate a self-enhanced therapy program. One specifically inhibits the Aß fibrils formation, degrades Aß fibrils, and prevents the reaggregation via multi-competitive interactions that are verified by computational analysis, which further alleviates the inflammation. Another effectively scavenges ROS and inflammation to remodel the cerebral redox balance and enhances the therapy effect, together reversing the neurotoxicity and achieving effective behavioral and cognitive improvements in the female AD mice model.


Subject(s)
Alzheimer Disease , Female , Animals , Mice , Alzheimer Disease/therapy , Reactive Oxygen Species , Amyloid beta-Peptides , Cytoskeleton , Inflammation , Plaque, Amyloid
10.
ACS Nano ; 17(17): 16840-16853, 2023 09 12.
Article in English | MEDLINE | ID: mdl-37605553

ABSTRACT

Glioblastoma multiforme (GBM) is the most common malignant brain tumor with low survival, primarily due to the blood-brain barrier (BBB) and high infiltration. Upconversion nanoparticles (UCNPs)-based near-infrared (NIR) phototherapy with deep penetration is a promising therapy method against glioma but faces low photoenergy utilization that is induced by spectral mismatch and single-site Förster resonance energy transfer (FRET). Herein, we designed a brain-targeting NIR theranostic system with a dual-site FRET route and superior spectral matching to maximize energy utilization for synergistic photodynamic and photothermal therapy of glioma. The system was fabricated by Tm-doped UCNPs, zinc tetraphenylporphyrin (ZnTPP), and copper sulfide (CuS) nanoparticles under multioptimized modulation. First, the Tm-doping ratio was precisely adjusted to improve the relative emission intensity at 475 nm of UCNPs (11.5-fold). Moreover, the J-aggregate of ZnTPP increased the absorption at 475 nm (163.5-fold) of monomer; both together optimize the FRET matching between UCNPs and porphyrin for effective NIR photodynamic therapy. Simultaneously, the emission at 800 nm was utilized to magnify the photothermal effect of CuS nanoparticles for photothermal therapy via the second FRET route. After being modified by a brain-targeted peptide, the system efficiently triggers the synergistic phototherapy ablation of glioma cells and significantly prolongs the survival of orthotopic glioma-bearing mice after traversing the BBB and targeting glioma. This success of advanced spectral modulation and dual-site FRET strategy may inspire more strategies to maximize the photoenergy utilization of UCNPs for brain diseases.


Subject(s)
Brain Neoplasms , Glioma , Nanoparticles , Animals , Mice , Fluorescence Resonance Energy Transfer , Theranostic Nanomedicine , Brain , Phototherapy , Glioma/therapy , Brain Neoplasms/therapy
11.
Nat Commun ; 14(1): 4557, 2023 07 28.
Article in English | MEDLINE | ID: mdl-37507371

ABSTRACT

Glioblastoma (GBM) remains the most lethal malignant tumours. Gboxin, an oxidative phosphorylation inhibitor, specifically restrains GBM growth by inhibiting the activity of F0F1 ATPase complex V. However, its anti-GBM effect is seriously limited by poor blood circulation, the blood brain barrier (BBB) and non-specific GBM tissue/cell uptake, leading to insufficient Gboxin accumulation at GBM sites, which limits its further clinical application. Here we present a biomimetic nanomedicine (HM-NPs@G) by coating cancer cell-mitochondria hybrid membrane (HM) on the surface of Gboxin-loaded nanoparticles. An additional design element uses a reactive oxygen species responsive polymer to facilitate at-site Gboxin release. The HM camouflaging endows HM-NPs@G with unique features including good biocompatibility, improved pharmacokinetic profile, efficient BBB permeability and homotypic dual tumour cell and mitochondria targeting. The results suggest that HM-NPs@G achieve improved blood circulation (4.90 h versus 0.47 h of free Gboxin) and tumour accumulation (7.73% ID/g versus 1.06% ID/g shown by free Gboxin). Effective tumour inhibition in orthotopic U87MG GBM and patient derived X01 GBM stem cell xenografts in female mice with extended survival time and negligible side effects are also noted. We believe that the biomimetic Gboxin nanomedicine represents a promising treatment for brain tumours with clinical potential.


Subject(s)
Brain Neoplasms , Glioblastoma , Nanoparticles , Humans , Female , Animals , Mice , Glioblastoma/pathology , Nanomedicine , Cell Line, Tumor , Mitochondrial Membranes/pathology , Blood-Brain Barrier/metabolism , Mitochondria , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism
14.
Adv Sci (Weinh) ; 10(13): e2206333, 2023 05.
Article in English | MEDLINE | ID: mdl-36869410

ABSTRACT

Near-infrared-II (NIR-II) ferroptosis activators offer promising potentials in in vivo theranostics of deep tumors, such as glioma. However, most cases are nonvisual iron-based systems that are blind for in vivo precise theranostic study. Additionally, the iron species and their associated nonspecific activations might trigger undesired detrimental effects on normal cells. Considering gold (Au) is an essential cofactor for life and it can specifically bind to tumor cells, Au(I)-based NIR-II ferroptosis nanoparticles (TBTP-Au NPs) for brain-targeted orthotopic glioblastoma theranostics are innovatively constructed. It achieves the real-time visual monitoring of both the BBB penetration and the glioblastoma targeting processes. Moreover, it is first validated that the released TBTP-Au specifically activates the effective heme oxygenase-1-regulated ferroptosis of glioma cells to greatly extend the survival time of glioma-bearing mice. This new ferroptosis mechanism based on Au(I) may open a new way for the fabrication of advanced and high-specificity visual anticancer drugs for clinical trials.


Subject(s)
Brain Neoplasms , Ferroptosis , Glioblastoma , Glioma , Animals , Mice , Glioblastoma/drug therapy , Glioblastoma/pathology , Cell Line, Tumor , Brain/pathology , Brain Neoplasms/drug therapy , Iron
15.
Nat Commun ; 14(1): 1578, 2023 03 22.
Article in English | MEDLINE | ID: mdl-36949068

ABSTRACT

Diffuse infiltration is the main reason for therapeutic resistance and recurrence in glioblastoma (GBM). However, potential targeted therapies for GBM stem-like cell (GSC) which is responsible for GBM invasion are limited. Herein, we report Insulin-like Growth Factor-Binding Protein 5 (IGFBP5) is a ligand for Receptor tyrosine kinase like Orphan Receptor 1 (ROR1), as a promising target for GSC invasion. Using a GSC-derived brain tumor model, GSCs were characterized into invasive or non-invasive subtypes, and RNA sequencing analysis revealed that IGFBP5 was differentially expressed between these two subtypes. GSC invasion capacity was inhibited by IGFBP5 knockdown and enhanced by IGFBP5 overexpression both in vitro and in vivo, particularly in a patient-derived xenograft model. IGFBP5 binds to ROR1 and facilitates ROR1/HER2 heterodimer formation, followed by inducing CREB-mediated ETV5 and FBXW9 expression, thereby promoting GSC invasion and tumorigenesis. Importantly, using a tumor-specific targeting and penetrating nanocapsule-mediated delivery of CRISPR/Cas9-based IGFBP5 gene editing significantly suppressed GSC invasion and downstream gene expression, and prolonged the survival of orthotopic tumor-bearing mice. Collectively, our data reveal that IGFBP5-ROR1/HER2-CREB signaling axis as a potential GBM therapeutic target.


Subject(s)
Glioblastoma , Humans , HEK293 Cells , Ligands , Glioblastoma/metabolism , Signal Transduction , Animals , Mice , Neoplasm Invasiveness , Xenograft Model Antitumor Assays
16.
J Biol Chem ; 299(3): 102926, 2023 03.
Article in English | MEDLINE | ID: mdl-36682493

ABSTRACT

Soluble amyloid-ß oligomers (AßOs) are proposed to instigate and mediate the pathology of Alzheimer's disease, but the mechanisms involved are not clear. In this study, we reported that AßOs can undergo liquid-liquid phase separation (LLPS) to form liquid-like droplets in vitro. We determined that AßOs exhibited an α-helix conformation in a membrane-mimicking environment of SDS. Importantly, SDS is capable of reconfiguring the assembly of different AßOs to induce their LLPS. Moreover, we found that the droplet formation of AßOs was promoted by strong hydrated anions and weak hydrated cations, suggesting that hydrophobic interactions play a key role in mediating phase separation of AßOs. Finally, we observed that LLPS of AßOs can further promote Aß to form amyloid fibrils, which can be modulated by (-)-epigallocatechin gallate. Our study highlights amyloid oligomers as an important entity involved in protein liquid-to-solid phase transition and reveals the regulatory role of LLPS underlying amyloid protein aggregation, which may be relevant to the pathological process of Alzheimer's disease.


Subject(s)
Alzheimer Disease , Phase Transition , Protein Aggregation, Pathological , Humans , Alzheimer Disease/physiopathology , Amyloid/chemistry , Amyloid/metabolism , Amyloid beta-Peptides/chemistry , Amyloid beta-Peptides/metabolism , Sodium Dodecyl Sulfate/chemistry , Protein Aggregation, Pathological/physiopathology
17.
Angew Chem Int Ed Engl ; 62(2): e202211550, 2023 01 09.
Article in English | MEDLINE | ID: mdl-36336656

ABSTRACT

Optimized theranostic strategies for Alzheimer's disease (AD) remain almost absent from bench to clinic. Current probes and drugs attempting to prevent ß-amyloid (Aß) fibrosis encounter failures due to the blood-brain barrier (BBB) penetration challenge and blind intervention time window. Herein, we design a near-infrared (NIR) aggregation-induced emission (AIE) probe, DNTPH, via balanced hydrophobicity-hydrophilicity strategy. DNTPH binds selectively to Aß fibrils with a high signal-to-noise ratio. In vivo imaging revealed its excellent BBB permeability and long-term tracking ability with high-performance AD diagnosis. Remarkably, DNTPH exhibits a strong inhibitory effect on Aß fibrosis and promotes fibril disassembly, thereby attenuating Aß-induced neurotoxicity. DNTPH treatment significantly reduced Aß plaques and rescued learning deficits in AD mice. Thus, DNTPH serves as the first AIE in vivo theranostic agent for real-time NIR imaging of Aß plaques and AD therapy simultaneously.


Subject(s)
Alzheimer Disease , Mice , Animals , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Precision Medicine , Amyloid beta-Peptides/metabolism , Blood-Brain Barrier/metabolism , Optical Imaging/methods
18.
Biomaterials ; 293: 121949, 2023 02.
Article in English | MEDLINE | ID: mdl-36525706

ABSTRACT

Exosome application has emerged as a promising nanotechnology discipline for various diseases therapeutics and diagnoses. Owing to the natural properties of efficient drug delivery, higher biocompatibility, facile traversing of physiological barriers, and subtle side effects, exosomes shorten their way to clinical translation. Exosomes are nanoscale membrane-bound vesicles primarily involved in intercellular communication and exhibit natural blood-brain barrier (BBB) traversing ability, which enables their application as drug delivery vehicles for brain diseases treatment. Herein, we highlight recent exosome-based drug delivery endeavors for neurodegenerative diseases and brain cancer therapy, summarize the obstacles and future directions in clinical translation.


Subject(s)
Exosomes , Drug Delivery Systems , Brain , Nanotechnology , Blood-Brain Barrier
19.
Nat Commun ; 13(1): 6835, 2022 11 11.
Article in English | MEDLINE | ID: mdl-36369424

ABSTRACT

Glioblastoma multiforme (GBM) is one of the most fatal malignancies due to the existence of blood-brain barrier (BBB) and the difficulty to maintain an effective drug accumulation in deep GBM lesions. Here we present a biomimetic nanogel system that can be precisely activated by near infrared (NIR) irradiation to achieve BBB crossing and deep tumor penetration of drugs. Synthesized by crosslinking pullulan and poly(deca-4,6-diynedioic acid) (PDDA) and loaded with temozolomide and indocyanine green (ICG), the nanogels are inert to endogenous oxidative conditions but can be selectively disintegrated by ICG-generated reactive oxygen species upon NIR irradiation. Camouflaging the nanogels with apolipoprotein E peptide-decorated erythrocyte membrane further allows prolonged blood circulation and active tumor targeting. The precisely controlled NIR irradiation on tumor lesions excites ICG and deforms the cumulated nanogels to trigger burst drug release for facilitated BBB permeation and infiltration into distal tumor cells. These NIR-activatable biomimetic nanogels suppress the tumor growth in orthotopic GBM and GBM stem cells-bearing mouse models with significantly extended survival.


Subject(s)
Glioblastoma , Mice , Animals , Glioblastoma/drug therapy , Glioblastoma/pathology , Nanogels , Biomimetics , Temozolomide , Indocyanine Green , Cell Line, Tumor
20.
Sci Rep ; 12(1): 17755, 2022 10 22.
Article in English | MEDLINE | ID: mdl-36272985

ABSTRACT

Soilless culture has been widely used in horticultural plant production, but little research has been done on bryophyte. In this study, we selected a cultivation substrate mixed and proportioned with garden soil, granular soil, grass charcoal soil, general-purpose nutrient soil, and decomposed grade II, III, and IV fallen wood of Pinus massoniana as the raw materials of soilless substrate to investigate its effects on the growth and physiology of Plagiomnium acutum. The results showed that the total porosity, water-holding porosity, and water-holding capacity of the mixed substrate containing fallen wood of P. massoniana were significantly higher than those of other cultivated substrates. The average cover of the P. acutum was significantly and positively correlated with the substrate's total porosity and water-holding porosity. Chlorophyll content was highly significantly and positively correlated with the water holding capacity and total nitrogen content of the substrate. Among them, VIII decomposition grade Pinus massoniana fallen log:Vgrass charcoal soil = 1:1 (SW8) substrate had the highest overall evaluation index and the best overall growth condition of P. acutum. In summary, VIII decomposition grade Pinus massoniana fallen log:Vgrass charcoal soil = 1:1 (SW8) substrate can be the best substrate for cultivation of P. acutum. The addition of P. massoniana fallen wood to the soil substrate increased the total porosity, water-holding porosity, and water-holding capacity of the substrate, which was conducive to the growth of P. acutum and the increase of chlorophyll content.


Subject(s)
Bryopsida , Pinus , Wood/chemistry , Charcoal , Soil/chemistry , Nitrogen/analysis , Water , Chlorophyll , China
SELECTION OF CITATIONS
SEARCH DETAIL