Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.720
Filter
1.
Transl Psychiatry ; 14(1): 320, 2024 Aug 04.
Article in English | MEDLINE | ID: mdl-39098892

ABSTRACT

The concept of a healthy lifestyle is receiving increasing attention. This study sought to identify an optimal healthy lifestyle profile associated with sleep health in general population of China. An online cross-sectional survey was conducted from June to July 2022. Six healthy lifestyle factors were assessed: healthy diet, regular physical exercise, never smoking, never drinking alcohol, low sedentary behavior, and normal weight. Participants were categorized into the healthy lifestyle (5-6 factors), average (3-4 factors), and unhealthy lifestyle groups (0-2 factors). The study's primary outcome was sleep health, which included sleep quality, duration, pattern, and the presence of any sleep disorder or disturbance, including insomnia, excessive daytime sleepiness, obstructive apnea syndrome, and narcolepsy. Multivariable logistic regression analysis was applied to explore lifestyles associated with the selected sleep health outcomes. 41,061 individuals were included, forming 18.8% healthy, 63.8% average, and 17.4% unhealthy lifestyle groups. After adjusting for covariates, participants with healthy lifestyle were associated with a higher likelihood of good sleep quality (OR = 1.56, 95% CI = 1.46-1.68), normal sleep duration (OR = 1.60, 95% CI = 1.49-1.72), healthy sleep pattern (OR = 2.15, 95% CI = 2.00-2.31), and lower risks of insomnia (OR = 0.66, 95% CI = 0.61-0.71), excessive daytime sleepiness (OR = 0.66, 95% CI = 0.60-0.73), and obstructive apnea syndrome (OR = 0.40, 95% CI = 0.37-0.43), but not narcolepsy (OR = 0.92, 95% CI = 0.83-1.03), compared to those with unhealthy lifestyle. This large cross-sectional study is the first to our knowledge to quantify the associations of a healthy lifestyle with specific aspects of sleep health. The findings offer support for efforts to improve sleep health by modulating lifestyle.


Subject(s)
Healthy Lifestyle , Humans , Male , Cross-Sectional Studies , Female , China/epidemiology , Middle Aged , Adult , Life Style , Sleep Quality , Sleep Wake Disorders/epidemiology , Aged , Exercise , Young Adult , Adolescent
2.
Sci Rep ; 14(1): 18133, 2024 08 05.
Article in English | MEDLINE | ID: mdl-39103397

ABSTRACT

To study a new method for establishing animal models of prenatal bronchopulmonary dysplasia (BPD), we used lung ultrasound score (LUS) to semi-quantitatively assess the severity of lung lesions in model rats. Lipopolysaccharide (LPS) was injected into the right lung of the fetus of the rat under ultrasound-guided, and the right lung of the neonates were scanning for LUS. Specimens were collected for pathological scoring and detection of pulmonary surfactant-associated glycoprotein (SP)-C and vascular endothelial growth factor (VEGF) expression quantity. The correlation between LUS and pathological scores was analyzed. (1) The animal models were consistent with the pathological manifestations of BPD. (2) It showed a strong positive correlation between LUS and pathological scores in animal models (r = 0.84, P < 0.005), and the expression quantity of SP-C and VEGF in lung tissue were decreased (both P < 0.05). Animal models established by ultrasound-guided puncture of the lung of rats and injection of LPS were consistent with the manifestation of BPD. This method could be used to establish animal models of BPD before birth, and the severity of BPD could be assessed by using LUS.


Subject(s)
Bronchopulmonary Dysplasia , Disease Models, Animal , Lung , Vascular Endothelial Growth Factor A , Animals , Bronchopulmonary Dysplasia/diagnostic imaging , Bronchopulmonary Dysplasia/metabolism , Bronchopulmonary Dysplasia/pathology , Rats , Female , Lung/diagnostic imaging , Lung/metabolism , Lung/pathology , Pregnancy , Vascular Endothelial Growth Factor A/metabolism , Lipopolysaccharides , Animals, Newborn , Severity of Illness Index , Rats, Sprague-Dawley , Ultrasonography, Prenatal/methods
3.
J Asian Nat Prod Res ; : 1-19, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39150175

ABSTRACT

Polygonati rhizoma (Huangjing in Chinese) is a common clinical tonic with the traditional effects of tonifying Qi, nourishing Yin. However, the lack of precise control of processing parameters has led to the uneven quality of processed Huangjing. A prediction model using the CRITIC method optimizes processing by correlating method, component contents, and biological activity, ensuring consistent quality and efficacy.

4.
PLoS One ; 19(8): e0307223, 2024.
Article in English | MEDLINE | ID: mdl-39137214

ABSTRACT

Nephron loop-vessel countercurrent arrangement in the medulla provides the structural basis for the formation of concentrated urine. To date, the morphogenesis of it and relevant water and solutes transportation has not been fully elucidated. In this study, with immunohistochemistry for aquaporins (AQP) and Na-K-2Cl co-transporter (NKCC2), as well as 3D visualization, we noticed in embryonic day 14.5 kidneys that the countercurrent arrangement of two pairs of loop-vessel was established as soon as the loop and vessel both extended into the medulla. One pair happened between descending limb and ascending vasa recta, the other occurred between thick ascending limb and descending vasa recta. Meanwhile, the immunohistochemical results showed that the limb and vessel expressing AQP-1 such as descending thick and thin limb and descending vasa recta was always accompanied with AQP-1 negative ascending vasa recta or capillaries and thick ascending limb, respectively. Moreover, the thick ascending limb expressing NKCC2 closely contacted with descending vasa recta without expressing NKCC2. As kidney developed, an increasing number of loop-vessels in countercurrent arrangement extended into the interstitium of the medulla. In addition, we observed that the AQP-2 positive ureteric bud and their branches were separated from those pairs of tubule-vessels by a relatively large and thin-walled veins or capillaries. Thus, the present study reveals that the loop-vessel countercurrent arrangement is formed at the early stage of nephrogenesis, which facilitates the efficient transportation of water and electrolytes to maintain the medullary osmolality and to form a concentrated urine.


Subject(s)
Aquaporin 1 , Immunohistochemistry , Solute Carrier Family 12, Member 1 , Animals , Mice , Solute Carrier Family 12, Member 1/metabolism , Aquaporin 1/metabolism , Imaging, Three-Dimensional/methods , Kidney/metabolism , Kidney/embryology , Kidney Tubules/metabolism , Loop of Henle/metabolism , Loop of Henle/embryology , Aquaporins/metabolism , Nephrons/metabolism , Nephrons/embryology , Female
5.
Plants (Basel) ; 13(15)2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39124225

ABSTRACT

Kentucky bluegrass (Poa pratensis L.), a widely used cool-season turfgrass, shows a high sensitivity to soil salinity. Clarifying the adaptative mechanisms of Kentucky bluegrass that serve to improve its salt tolerance in saline environments is urgent for the application of this turfgrass in salt-affected regions. In this study, physiological responses of the Kentucky bluegrass cultivars "Explorer" and "Blue Best" to NaCl treatment, as well as gene expressions related to photosynthesis, ion transport, and ROS degradation, were analyzed. The results showed that the growth of "Explorer" was obviously better compared to "Blue Best" under 400 mM NaCl treatment. "Explorer" exhibited a much stronger photosynthetic capacity than "Blue Best" under NaCl treatment, and the expression of key genes involved in chlorophyll biosynthesis, photosystem II, and the Calvin cycle in "Explorer" was greatly induced by salt treatment. Compared with "Blue Best", "Explorer" could effectively maintain Na+/K+ homeostasis in its leaves under NaCl treatment, which can be attributed to upregulated expression of genes, such as HKT1;5, HAK5, and SKOR. The relative membrane permeability and contents of O2- and H2O2 in "Explorer" were significantly lower than those in "Blue Best" under NaCl treatment, and, correspondingly, the activities of SOD and POD in the former were significantly higher than in the latter. Moreover, the expression of genes involved in the biosynthesis of enzymes in the ROS-scavenging system of "Explorer" was immediately upregulated after NaCl treatment. Additionally, free proline and betaine are important organic osmolytes for maintaining hydration status in Kentucky bluegrass under NaCl treatment, as the contents of these metabolites in "Explorer" were significantly higher than in "Blue Best". This work lays a theoretical basis for the improvement of salt tolerance in Kentucky bluegrass.

6.
Int J Mol Sci ; 25(15)2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39125719

ABSTRACT

Apostasia fujianica belongs to the genus Apostasia and is part of the basal lineage in the phylogenetic tree of the Orchidaceae. Currently, there are only ten reported complete mitochondrial genomes in orchids, which greatly hinders the understanding of mitochondrial evolution in Orchidaceae. Therefore, we assembled and annotated the mitochondrial genome of A. fujianica, which has a length of 573,612 bp and a GC content of 44.5%. We annotated a total of 44 genes, including 30 protein-coding genes, 12 tRNA genes, and two rRNA genes. We also performed relative synonymous codon usage (RSCU) analysis, repeat sequence analysis, intergenomic transfer (IGT) analysis, and Ka/Ks analysis for A. fujianica and conducted RNA editing site analysis on the mitochondrial genomes of eight orchid species. We found that most protein-coding genes are under purifying selection, but nad6 is under positive selection, with a Ka/Ks value of 1.35. During the IGT event in A. fujianica's mitogenome, the trnN-GUU, trnD-GUC, trnW-CCA, trnP-UGG, and psaJ genes were identified as having transferred from the plastid to the mitochondrion. Compared to other monocots, the family Orchidaceae appears to have lost the rpl10, rpl14, sdh3, and sdh4 genes. Additionally, to further elucidate the evolutionary relationships among monocots, we constructed a phylogenetic tree based on the complete mitogenomes of monocots. Our study results provide valuable data on the mitogenome of A. fujianica and lay the groundwork for future research on genetic variation, evolutionary relationships, and breeding of Orchidaceae.


Subject(s)
Genome, Mitochondrial , Orchidaceae , Phylogeny , Orchidaceae/genetics , Orchidaceae/classification , Genome, Mitochondrial/genetics , Evolution, Molecular , RNA, Transfer/genetics , Base Composition , RNA Editing/genetics , Codon Usage
7.
Phys Chem Chem Phys ; 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39129471

ABSTRACT

In this study, we explore the mass transfer and separation mechanism of Li+ and Mg2+ confined within the flexible nanoporous zeolite imidazolate framework ZIF-8 under the influence of an electric field, employing molecular dynamics simulation. Our results highlight that the electric field accelerates the dehydration process of ions and underscore the critical importance of ZIF-8 framework flexibility in determining the separation selectivity of the ZIF-8 membrane. The electric field is shown to diminish ion hydration in the confined space of ZIF-8, notably disrupting the orientation of water molecules in the first hydration shells of ions, leading to an asymmetrical ionic hydration structure characterized by the uniform alignment of water dipoles. Furthermore, despite the geometrical constraints imposed by the ZIF-8 framework, the electric field significantly enhances ionic mobility. Notably, the less stable hydration shell of Li+ facilitates its rapid, dehydration-induced transit through ZIF-8 nanopores, unlike Mg2+, whose stable hydration shell impedes dehydration. Further investigation into the structural characteristics of the six-ring windows traversed by Li+ and Mg2+ ions reveals distinct mechanisms of passage: for Mg2+ ions, significant window expansion is necessary, while for Li+ ions, the mechanism involves both window expansion and partial dehydration. These findings reveal the profound impact of the electric field and framework flexibility on the separation of Li+ and Mg2+, offering critical insights for the potential application of flexible nanoporous materials in the selective extraction of Li+ from salt-lake brine.

8.
J Inflamm Res ; 17: 5271-5283, 2024.
Article in English | MEDLINE | ID: mdl-39139580

ABSTRACT

Purpose: Impaired quality of life (QOL) is common in patients with inflammatory bowel disease (IBD). A tool to more quickly identify IBD patients at high risk of impaired QOL improves opportunities for earlier intervention and improves long-term prognosis. The purpose of this study was to use a machine learning (ML) approach to develop risk stratification models for evaluating IBD-related QOL impairments. Patients and Methods: An online questionnaire was used to collect clinical data on 2478 IBD patients from 42 hospitals distributed across 22 provinces in China from September 2021 to May 2022. Eight ML models used to predict the risk of IBD-related QOL impairments were developed and validated. Model performance was evaluated using a set of indexes and the best ML model was explained using a Local Interpretable Model-Agnostic Explanations (LIME) algorithm. Results: The support vector machine (SVM) classifier algorithm-based model outperformed other ML models with an area under the receiver operating characteristic curve (AUC) and an accuracy of 0.80 and 0.71, respectively. The feature importance calculated by the SVM classifier algorithm revealed that glucocorticoid use, anxiety, abdominal pain, sleep disorders, and more severe disease contributed to a higher risk of impaired QOL, while longer disease course and the use of biological agents and immunosuppressants were associated with a lower risk. Conclusion: An ML approach for assessing IBD-related QOL impairments is feasible and effective. This mechanism is a promising tool for gastroenterologists to identify IBD patients at high risk of impaired QOL.

9.
BMC Med ; 22(1): 282, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38972973

ABSTRACT

BACKGROUND: The advances in deep learning-based pathological image analysis have invoked tremendous insights into cancer prognostication. Still, lack of interpretability remains a significant barrier to clinical application. METHODS: We established an integrative prognostic neural network for intrahepatic cholangiocarcinoma (iCCA), towards a comprehensive evaluation of both architectural and fine-grained information from whole-slide images. Then, leveraging on multi-modal data, we conducted extensive interrogative approaches to the models, to extract and visualize the morphological features that most correlated with clinical outcome and underlying molecular alterations. RESULTS: The models were developed and optimized on 373 iCCA patients from our center and demonstrated consistent accuracy and robustness on both internal (n = 213) and external (n = 168) cohorts. The occlusion sensitivity map revealed that the distribution of tertiary lymphoid structures, the geometric traits of the invasive margin, the relative composition of tumor parenchyma and stroma, the extent of necrosis, the presence of the disseminated foci, and the tumor-adjacent micro-vessels were the determining architectural features that impacted on prognosis. Quantifiable morphological vector extracted by CellProfiler demonstrated that tumor nuclei from high-risk patients exhibited significant larger size, more distorted shape, with less prominent nuclear envelope and textural contrast. The multi-omics data (n = 187) further revealed key molecular alterations left morphological imprints that could be attended by the network, including glycolysis, hypoxia, apical junction, mTORC1 signaling, and immune infiltration. CONCLUSIONS: We proposed an interpretable deep-learning framework to gain insights into the biological behavior of iCCA. Most of the significant morphological prognosticators perceived by the network are comprehensible to human minds.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Deep Learning , Humans , Cholangiocarcinoma/pathology , Prognosis , Bile Duct Neoplasms/pathology , Male , Female , Middle Aged , Image Processing, Computer-Assisted/methods , Aged
10.
Int J Biol Macromol ; 276(Pt 1): 133489, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38964679

ABSTRACT

Indole-based bis-acylhydrazone compounds can inhibit the activity of α-glucosidase and control the concentration of blood glucose. In this paper, the characteristics of three indole-based bis-acylhydrazone compounds with different inhibitory activities of α-glucosidase as well as the interaction with α-glucosidase were studied by experiments and computational simulation techniques. Enzyme kinetic and spectral experiments showed that the indole-based bis-acylhydrazone compounds were able to inhibit enzyme activity through mixed inhibition dominated by competitive inhibition, and during the binding reaction, indole-based bis-acylhydrazone compounds can quench the intrinsic fluorescence of α-glucosidase through static quenching and an aggregation of the indole-based bis-acylhydrazone with α-glucosidase produces a stable complex with a molar ratio of 1:1, and the combination of indole-based bis-acylhydrazone compounds could lead to slight change in the conformation of α-glucosidase. The theoretical simulation demonstrated that the stability of the complex systems was positively correlated with the inhibitory activity of indole-based bis-acylhydrazone compounds, and the indole-based bis-acylhydrazone compounds occupied the active site in the multi-ligand system, resulting in a significant decrease in the binding ability of starch to active amino acids. These results suggested that indole-based bis-acylhydrazone compound was expected to be a new type of α-glucosidase inhibitor.

11.
Inorg Chem ; 63(28): 12981-12991, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38951131

ABSTRACT

The chemical fixation of CO2 into epoxides for the synthesis of cyclic carbonates is an appealing solution to both reduce global CO2 emission and produce fine chemicals, but it is still a prime challenge to develop a low-cost, earth-abundant, yet efficient solid catalyst. Herein, Fe2O3/NiFe2O4 heterostructures are facilely constructed for the highly efficient cycloaddition of CO2 with styrene oxide (SO) to produce styrene carbonate (SC). Both experimental findings and density functional theory (DFT) calculations substantiate the prominent electron transfer and charge redistribution within the heterointerfaces between the biphasic components, which induce a unique interfacial microenvironment that can facilitate the adsorption and activation of SO. This endows the biphasic catalyst with a substantially higher reactivity than the individual components. This study sheds new insights into the establishment of heterostructured catalysts consisting of transitional metal oxides for the high-efficiency production of SC from the cycloaddition of CO2 with SO.

12.
Materials (Basel) ; 17(13)2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38998449

ABSTRACT

In this work, the solid solution product of [Nb][C] in the Nb-microalloyed steels with various carbon contents in the range of 0.20~1.80 wt.% was investigated by means of the extraction phase analysis method. The results showed that the Nb content in austenite tended to first decrease and then increase with the increase of carbon content in the steels. A unified solid solution product of [Nb][C] in austenite at different temperatures was obtained according to the results of the experimental steels. The Nb content in austenite of the experimental steels with high carbon contents was lower than that calculated by Ohtani's equation. The existence of NbC precipitates in the case and the core of the specimens carburized at 930 °C and 980 °C were verified by transmission electron microscopy (TEM) observations. The pinning effect of NbC precipitates on austenite grain growth was calculated according to the size and amount of NbC precipitates in the carburized case and the core of the carburized specimens. The calculated results of prior austenite grain sizes were in good agreement with the experimental results, which indicated that the unified solid solution product of [Nb][C] in Nb-microalloyed steels with various carbon contents was applicable for the low-pressure carburizing process.

13.
J Mol Med (Berl) ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953935

ABSTRACT

Diabetes mellitus (DM), an important public health problem, aggravates the global economic burden. Diabetic encephalopathy (DE) is a serious complication of DM in the central nervous system. Metformin has been proven to improve DE. However, the mechanism is still unclear. In this study, the db/db mice, a common model used for DE, were employed to explore and study the neuroprotective effect of metformin and related mechanisms. Behavioral tests indicated that metformin (100 or 200 mg/kg/day) could significantly improve the learning and memory abilities of db/db mice. The outcomes from the oral glucose tolerance test (OGTT) and insulin tolerance test (ITT) demonstrate that metformin effectively modulates glucose and insulin signaling pathways in db/db mice. The results of body weight and blood lipid panel (total cholesterol, triglycerides, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol) show that metformin promotes the level of lipid metabolism in db/db mice. Furthermore, data from oxidative stress assays, which measured levels of malondialdehyde, superoxide dismutase, catalase, and glutathione peroxidase, suggest that metformin suppresses oxidative stress-induced brain damage in db/db mice. In addition, western blot, Nissl staining, and immunofluorescence results showed that metformin increased the expressions of nerve growth factor and postsynaptic density 95 and repaired neuronal structural damage. For the mechanism study, metformin activated SIRT1 and inhibited the expression of NLRP3 inflammasome (NLRP3, ASC, caspase-1, IL-1ß, and IL-18) and inflammatory cytokines (TNFα and IL-6). In conclusion, metformin could ameliorate cognitive dysfunction through the SIRT1/NLRP3 pathway, which might be a promising mechanism for DE treatment.

14.
Transl Psychiatry ; 14(1): 270, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956035

ABSTRACT

Brain function is vulnerable to the consequences of inadequate sleep, an adverse trend that is increasingly prevalent. The REM sleep phase has been implicated in coordinating various brain structures and is hypothesized to have potential links to brain variability. However, traditional imaging research have encountered challenges in attributing specific brain region activity to REM sleep, remained understudied at the whole-brain connectivity level. Through the spilt-night paradigm, distinct patterns of REM sleep phases were observed among the full-night sleep group (n = 36), the early-night deprivation group (n = 41), and the late-night deprivation group (n = 36). We employed connectome-based predictive modeling (CPM) to delineate the effects of REM sleep deprivation on the functional connectivity of the brain (REM connectome) during its resting state. The REM sleep-brain connectome was characterized by stronger connectivity within the default mode network (DMN) and between the DMN and visual networks, while fewer predictive edges were observed. Notably, connections such as those between the cingulo-opercular network (CON) and the auditory network, as well as between the subcortex and visual networks, also made significant contributions. These findings elucidate the neural signatures of REM sleep loss and reveal common connectivity patterns across individuals, validated at the group level.


Subject(s)
Brain , Connectome , Magnetic Resonance Imaging , Sleep Deprivation , Sleep, REM , Humans , Male , Sleep Deprivation/physiopathology , Sleep Deprivation/diagnostic imaging , Sleep, REM/physiology , Female , Adult , Brain/physiopathology , Brain/diagnostic imaging , Young Adult , Nerve Net/physiopathology , Nerve Net/diagnostic imaging , Default Mode Network/diagnostic imaging , Default Mode Network/physiopathology
15.
Cell Death Dis ; 15(7): 483, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38969650

ABSTRACT

Hepatocellular carcinoma (HCC) is one of the most common malignant tumors, and the expression and function of an uncharacterized protein RNF214 in HCC are still unknown. Phase separation has recently been observed to participate in the progression of HCC. In this study, we investigated the expression, function, and phase separation of RNF214 in HCC. We found that RNF214 was highly expressed in HCC and associated with poor prognosis. RNF214 functioned as an oncogene to promote the proliferation, migration, and metastasis of HCC. Mechanically, RNF214 underwent phase separation, and the coiled-coil (CC) domain of RNF214 mediated its phase separation. Furthermore, the CC domain was necessary for the oncogenic function of RNF214 in HCC. Taken together, our data favored that phase separation of RNF214 promoted the progression of HCC. RNF214 may be a potential biomarker and therapeutic target for HCC.


Subject(s)
Carcinoma, Hepatocellular , Cell Proliferation , Disease Progression , Liver Neoplasms , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/pathology , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Humans , Cell Line, Tumor , Animals , Cell Movement/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Male , Mice, Nude , Mice , Gene Expression Regulation, Neoplastic , Female , Mice, Inbred BALB C , Middle Aged , Phase Separation
16.
Plant Dis ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38985508

ABSTRACT

In July 2023, a new leaf spot disease emerged on tobacco leaves in Meitan County, Guizhou Province, China (27°20'18" - 28°12'30"N, 107°15'36" - 107°41'08"E, average altitude 972 meters). Initially, the symptoms showed raised yellow-brown spots; subsequently, the lesions expanded and became broken and perforated, leading to a significant loss of economic value, the prevalence rate exceeded 30%. For isolation, two tissue fragments (0.2 × 0.2 cm) of symptomatic leaves were sterilized in 75% ethanol for 30 s, 3% NaClO for 2 min, and were washed 3 times in sterilized distilled water, and were subsequently inoculated on potato dextrose agar (PDA), and incubated at 28°C for 9 days in the dark. The two strains CW16 and CW28 were isolated using the single hyphae method (Nouri et al. 2023). Both strains formed pale to yellow white colonies on PDA. Conidia had three constricted transverse septa and 1 to 2 longitudinal septa in the central cells, with thick and hyaline conidiophores and mostly globose, pale brown conidia with slightly constricted septa, their average size were measured as 13.4-22.4×8.358-13.347 µm (n = 50). Genomic DNA was extracted from the isolated strains CW16 and CW28. The internal transcribed spacer regions 1 and 2 as well as 5.8S nuclear ribosomal RNA (ITS), large subunit nrRNA (LSU), and partial DNA-directed RNA polymerase II second largest subunit (RPB2) genes were amplified using primers (Cui et al. 2023). The sequences had been deposited in GenBank under accession numbers ITS: PP024201, PP024205; LSU: PP024207, PP024209; RPB2: PP060480, PP060481. The sequences analysis revealed a high similarity of 99.74 to 100% between strains CW16 and CW28 with P. palmicola isolate KM42 (ITS OQ875842, LSU OQ875844, RPB2 OQ883943) in GenBank. Using BLAST for homology matching, two isolates (CW16, CW28) and with the sequences of the ten type isolates from GenBank, phylogenetic analysis was conducted using the Maximum Likelihood method in MEGA (11.0) software based on ITS, LSU and RPB2 sequences, which showed that strains CW16, CW28 clustered in the same score as the Pseudopithomyces palmicola, confirming the morphological and molecular characteristics identification. The pathogenicity tests were conducted on healthy tobacco plants with 4-5 leaves (Fig. S1B), the isolated strains, CW16 and CW28, were used to inoculate the healthy tobacco leaves, while blank PDA was used as a control. All plants were maintained in a greenhouse at 28°C with a relative humidity of 90%. After 9 days, necrotic spots were observed on all tobacco leaves inoculated with CW16 and CW28 fungal plugs, while the blank PDA-inoculated tobacco leaves showed no symptoms. Based on morphological and molecular characteristics, the same pathogen P. palmicola was identified from the inoculated leaves, fulfilling Koch's postulates. This study represents the first reported of tobacco leaf spot caused by P. palmicola in China and provides a theoretical basis for future prevention and control measures.

17.
Huan Jing Ke Xue ; 45(7): 3828-3838, 2024 Jul 08.
Article in Chinese | MEDLINE | ID: mdl-39022931

ABSTRACT

Based on a typical ozone (O3) pollution process in Jinan City from June 16 to 26, 2021, the variation characteristics of O3 and its precursor volatile organic compounds (VOCs) during different pollution periods (clean period (CP), pollution rise period (PRP), heavy pollution period (HPP), and pollution decline period (PDP)) in the urban area were analyzed. Both positive matrix factorization (PMF) and an observation-based model (OBM) were used to identify the main sources of VOCs, O3 production mechanisms, and sensitive species. The results showed that the average value of ρ(O3-8h) during the HPP period in the urban area was (246.67±11.24) µg·m-3, and ρ(O3-1h) had a peak value of 300 µg·m-3. The volume fractions of VOCs and NO2 concentration were affected by the decrease in planetary boundary layer and wind speed, which were 76.99%-145.36% and 127.78%-141.18% higher than those in the other three periods, respectively, and were the main reasons for the aggravation of O3 pollution. Alkanes, oxygenated volatile organic compounds (OVOCs), and halogenated hydrocarbons accounted for 43.81%, 20.98%, and 17.43% of VOCs in urban areas, respectively. All of them showed significant growth during the HPP period, with acetone, propane, and ethane being the top three species by volume in each stage and isopentane showing the highest growth during the HPP period. Alkene, alkanes, and aromatic hydrocarbons accounted for 40.19%, 28.06%, and 21.92% of the ozone generation potential (OFP). 1-butene, toluene, isopentane, and isoprene were the species with higher OFP. Isoprene had the highest OFP during the PRP phase, and 1-butene had the highest OFP during the HPP phase. The volume fraction of isopentane significantly increased OFP. The correlation coefficient between VOCs and CO preliminarily indicated that motor vehicle exhaust and oil and gas volatilization were the main sources of VOCs during the HPP period. Further use of PMF revealed that solvent use sources, combustion sources, motor vehicle exhaust+oil and gas volatilization sources, industrial emission sources, and plant sources were important sources of VOCs in urban areas. The contribution of motor vehicle exhaust+oil and gas volatilization sources in the HPP period to VOCs was 3.09-14.72 times higher than that in other periods. The contribution of solvent use sources to VOCs was approximately 2.50 times higher than that in the CP and PRP periods. The main sources of VOCs volume fraction increase were motor vehicle exhaust, oil and gas volatilization sources, and solvent use sources. Potential sources and concentration weight analysis found that VOCs were also affected by the transmission of VOCs to Binzhou and Dongying in the northeast direction. The OBM results indicated that the main pathway of O3 formation in urban areas was the reaction of peroxide hydroxyl radicals (HO2·ï¼‰ and methyl peroxide radicals (CH3O2·ï¼‰ with NO, and the net ozone generation rate during the HPP phase [P(O3)net] was 24×10-9 h-1. Based on the sensitivity experiment results, the alkene components of 1-butene, propylene, cis-2-butene, and ethylene were the dominant species for O3 production.

18.
Org Lett ; 26(28): 5940-5945, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38989672

ABSTRACT

The most convenient and direct method of synthesizing an α-acyloxy ketone is the reaction of a diazo compound with a carboxylic acid via O-H insertion. However, due to the limitations in preparing and storing diazo compounds, the application of this method is restricted. In this study, Cu(OAc)2-mediated (OAc = acetate) decarboxylative coupling reactions of 3-indoleacetic acids with sulfoxonium ylides were developed for use in rapidly synthesizing α-acetoxyl ketones. In this reaction, Cu(OAc)2 was not only used as an oxidant, but also as acetate ion source. Notably, when 5-methoxy-2-methyl-3-indoleacetic acid reacted with different sulfoxonium ylides, the corresponding products exhibited fluorescence, and furthermore, several products displayed antiproliferative activities against various human cancer cell lines.

19.
BMC Pulm Med ; 24(1): 343, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39014333

ABSTRACT

BACKGROUND: Primary ciliary dyskinesia (PCD) is an autosomal recessive hereditary disease characterized by recurrent respiratory infections. In clinical manifestations, DNAH5 (NM_001361.3) is one of the recessive pathogenic genes. Primary familial brain calcification (PFBC) is a neurodegenerative disease characterized by bilateral calcification in the basal ganglia and other brain regions. PFBC can be inherited in an autosomal dominant or recessive manner. A family with PCD caused by a DNAH5 compound heterozygous variant and PFBC caused by a MYORG homozygous variant was analyzed. METHODS: In this study, we recruited three generations of Han families with primary ciliary dyskinesia combined with primary familial brain calcification. Their clinical phenotype data were collected, next-generation sequencing was performed to screen suspected pathogenic mutations in the proband and segregation analysis of families was carried out by Sanger sequencing. The mutant and wild-type plasmids were constructed and transfected into HEK293T cells instantaneously, and splicing patterns were detected by Minigene splicing assay. The structure and function of mutations were analyzed by bioinformatics analysis. RESULTS: The clinical phenotypes of the proband (II10) and his sister (II8) were bronchiectasis, recurrent pulmonary infection, multiple symmetric calcifications of bilateral globus pallidus and cerebellar dentate nucleus, paranasal sinusitis in the whole group, and electron microscopy of bronchial mucosa showed that the ciliary axoneme was defective. There was also total visceral inversion in II10 but not in II8. A novel splice variant C.13,338 + 5G > C and a frameshift variant C.4314delT (p. Asn1438lysfs *10) were found in the DNAH5 gene in proband (II10) and II8. c.347_348dupCTGGCCTTCCGC homozygous insertion variation was found in the MYORG of the proband. The two pathogenic genes were co-segregated in the family. Minigene showed that DNAH5 c.13,338 + 5G > C has two abnormal splicing modes: One is that part of the intron bases where the mutation site located is translated, resulting in early translation termination of DNAH5; The other is the mutation resulting in the deletion of exon76. CONCLUSIONS: The newly identified DNAH5 splicing mutation c.13,338 + 5G > C is involved in the pathogenesis of PCD in the family, and forms a compound heterozygote with the pathogenic variant DNAH5 c.4314delT lead to the pathogenesis of PCD.


Subject(s)
Calcinosis , Mutation , Pedigree , Humans , Male , Calcinosis/genetics , Calcinosis/pathology , Female , Axonemal Dyneins/genetics , Adult , Ciliary Motility Disorders/genetics , Brain Diseases/genetics , Phenotype , HEK293 Cells , China , RNA Splicing/genetics , Middle Aged , Glycoside Hydrolases
20.
J Photochem Photobiol B ; 258: 112992, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39084139

ABSTRACT

Ribociclib (RIB), a tyrosine kinase inhibitor, exhibits promising antitumor efficacy and controlled toxicity in HR+/HER2- breast cancer patients, which is closely related to the binding with plasma proteins. This study utilized a combination of spectroscopic techniques including UV spectroscopy, fluorescence spectroscopy, and circular dichroism (CD) as well as molecular docking and molecular dynamic simulation to clarify the binding mechanism between bovine serum albumin (BSA) and RIB. The findings demonstrated that RIB produced a 1:1 stoichiometric complex with BSA, which quenched BSA's fluorescence in the manner of the static quenching mechanism. Site labelling experiments pinpointed Site III on BSA as the primary binding site for RIB, a finding validated by molecular docking. Van der Waals forces and hydrogen bonding interactions as key drivers in the formation of RIB-BSA complexes, a conclusion supported by molecular docking. Molecular simulation studies suggested that the insertion of RIB into the hydrophobic cavity (Site III) of BSA induced subtle conformational changes in the BSA protein, and CD measurements confirmed alterations in BSA secondary structure content. Synchronous and three-dimensional fluorescence spectroscopy further demonstrated that RIB decreased the hydrophobicity of the microenvironment surrounding tyrosine and tryptophan residues. These findings offer valuable insights into the pharmacokinetics and structural modifications of RIB.

SELECTION OF CITATIONS
SEARCH DETAIL