Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Ecotoxicol Environ Saf ; 224: 112682, 2021 Aug 19.
Article in English | MEDLINE | ID: mdl-34419646

ABSTRACT

Cadmium (Cd) stress is a ubiquitous abiotic stress affecting plant growth worldwide and negatively impacting crop yield and food safety. Potato is the most important non-grain crop globally, but there is limited research available on the response of this crop to Cd stress. This study explored the coping mechanism for Cd stress in potato through analyses of miRNA and mRNA. Tissue culture seedlings (20-day-old) of potato variety 'Atlantic' were cultured for up to 48 h in liquid medium containing 5 mmol/L CdCl2, and phenotypic, physiological, and transcriptomic changes were observed at specific times. With the extension of Cd stress time, the potato leaves gradually wilted and curled, and root salicylic acid (SA), glutathione (GSH), and lignin contents and peroxidase (POD) activity increased, while indole-3-acetic acid (IAA) and zeatin (ZT) contents decreased. Using miRNA-seq, 161 existing miRNAs, 383 known miRNAs, and 7361 novel miRNAs were identified, and, 18 miRNAs were differentially expressed in response to Cd stress. Based on mRNA-seq, 7340 differentially expressed mRNAs (DEGs) were found. Through mRNA-miRNA integrated analysis, miRNA-target gene pairs consisting of 23 DEGs and 33 miRNAs were identified. Furthermore, "glutathione metabolism" "plant hormone signal transduction" and "phenylpropanoid biosynthesis" were established as crucial pathways in the Cd stress response of potato. Novel miRNAs novel-m3483-5p and novel-m2893-5p participate in these pathways through targeted regulation of cinnamic alcohol dehydrogenase (CAD; PG0005359) and alanine aminotransferase (POP; PG0024281), respectively. This study provides information that will help elucidate the complex mechanism of the Cd stress response in potato. Moreover, candidate miRNAs and mRNAs could yield new strategies for the development of Cd-tolerant potato breeding.

2.
Int J Biol Macromol ; 182: 938-949, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-33878362

ABSTRACT

The continuing increase in the global saline-alkali land area has made saline-alkali stress the principal abiotic stress limiting plant growth. Potato is the most important non-grain crop, and its production is also severely limited by saline-alkali stress. However, few studies have addressed the mechanism of saline-alkali tolerance of potato with a focus on its response to neutral salt NaCl stress, or its response to alkali stress. Recently, miRNA-mRNA analyses have helped advance our understanding of how plants respond to stress. Here, we have characterized the morphological, physiological, and transcriptome changes of tissue culture seedlings of potato variety "Qingshu No. 9" treated with NaHCO3 (for 0, 2, 6, and 24 h). We found that the leaves of tissue culture seedlings wilted and withered under alkali stress, and the contents of ABA, BRs, trehalose, and lignin in roots increased significantly. The contents of GAs decreased significantly. Subsequently, miRNA-seq analysis results identified 168 differentially expressed miRNAs (DEMIs) under alkali stress, including 21 exist miRNAs and 37 known miRNAs from 47 families and 110 novel miRNAs. The mRNA-seq results identified 5731 differentially expressed mRNAs (DEMs) under alkali stress. By miRNA-mRNA integrated analysis, were obtained 33 miRNA-target gene pairs composed of 20 DEMIs and 33 DEMs. Next, we identified the "phenylpropanoid biosynthesis", "plant hormone signal transduction", and "starch and sucrose metabolism" pathways as necessary for potato to respond to alkali stress. miR4243-x and novel-m064-5p were involved in the response of potato to alkali stress by their negative regulatory effects on shikimate O-hydroxycinnamoyltransferase (HCT) and sucrose-phosphate synthase (SPS) genes, respectively. The expression results of miRNA and mRNA were verified by quantitative real-time PCR (qRT-PCR). Our results clarify the mechanism of potato response to alkali stress at the miRNA level, providing new insights into the molecular mechanisms of potato's response to alkali stress. We report many candidate miRNAs and mRNAs for molecular-assisted screening and salt-alkali resistance breeding.


Subject(s)
Gene Expression Regulation, Plant , Gene Regulatory Networks , MicroRNAs/genetics , RNA, Messenger/genetics , Solanum tuberosum/genetics , Stress, Physiological , Alkalies/toxicity , MicroRNAs/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , RNA, Messenger/metabolism , Solanum tuberosum/metabolism , Transcriptome
3.
PeerJ ; 8: e9310, 2020.
Article in English | MEDLINE | ID: mdl-32566405

ABSTRACT

Lectin receptor-like kinases (LecRLKs) are involved in responses to diverse environmental stresses and pathogenic microbes. A comprehensive acknowledgment of the family members in potato (Solanum tuberosum) genome is largely limited until now. In total, 113 potato LecRLKs (StLecRLKs) were first identified, including 85 G-type, 26 L-type and 2 C-type members. Based on phylogenetic analysis, StLecRLKs were sub-grouped into seven clades, including C-type, L-type, G-I, G-II, G-III G-IV and G-V. Chromosomal distribution and gene duplication analysis revealed the expansion of StLecRLKs occurred majorly through tandem duplication although the whole-genome duplication (WGD)/segmental duplication events were found. Cis-elements in the StLecRLKs promoter region responded mainly to signals of defense and stress, phytohormone, biotic or abiotic stress. Moreover, expressional investigations indicated that the family members of the clades L-type, G-I, G-IV and G-V were responsive to both bacterial and fungal infection. Based on qRT-PCR analysis, the expressions of PGSC0003DMP400055136 and PGSC0003DMP400067047 were strongly induced in all treatments by both Fusarium sulphureum (Fs) and Phytophthora infestans (Pi) inoculation. The present study provides valuable information for LecRLKs gene family in potato genome, and establishes a foundation for further research into the functional analysis.

4.
PLoS One ; 15(5): e0232694, 2020.
Article in English | MEDLINE | ID: mdl-32375166

ABSTRACT

Malus halliana is an iron (Fe)-efficient apple rootstock growing in calcareous soil that shows obvious 'greenness' traits during Fe deficiency. Recent studies have shown that exogenous sugars can be involved in abiotic stress. To identify the key regulatory steps of chlorophyll (Chl) biosynthesis in M. halliana under Fe deficiency and to verify whether exogenous sucrose (Suc) is involved in Fe deficiency stress, we determined the contents of the Chl precursor and the expression of several Chl biosynthetic genes in M. halliana. The results showed that Fe deficiency caused a significant increase in the contents of protoporphyrin IX (Proto IX), Mg-protoporphyrin IX (Mg-Proto IX) and protochlorophyllide (Pchlide) in M. halliana compared to the Fe-sensitive rootstock Malus hupehensis. Quantitative real-time PCR (RT-qPCR) also showed that the expression of protoporphyrinogen oxidase (PPOX), which synthesizes Proto IX, was upregulated in M. halliana and downregulated in M. hupehensis under Fe deficiency. Exogenous Suc application prominently enhanced the contents of porphobilinogen (PBG) and the subsequent precursor, whereas it decreased the level of δ-aminolaevulinic acid (ALA), suggesting that the transformation from ALA to PBG was catalyzed in M. halliana. Additionally, the transcript level of δ-aminolevulinate acid dehydratase (ALAD) was noticeably upregulated after exogenous Suc treatment. This result, combined with the precursor contents, indicated that Suc accelerated the steps of Chl biosynthesis by modulating the ALAD gene. Therefore, we conclude that PPOX is the key regulatory gene of M. halliana in response to Fe deficiency. Exogenous Suc enhances M. halliana tolerance to Fe deficiency stress by regulating Chl biosynthesis.


Subject(s)
Chlorophyll/metabolism , Iron/metabolism , Malus/metabolism , Sucrose/metabolism , Protochlorophyllide/metabolism , Protoporphyrins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...