Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Microorganisms ; 12(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39065115

ABSTRACT

Blackleg disease, a major threat to Brassica crops worldwide, is primarily caused by the pathogen Leptosphaeria biglobosa. Investigating the genetic variation of L. biglobosa is crucial for managing and preventing the disease in Brassica napus. To date, there is scarce genomic variation information available for populations of L. biglobosa in China. In this study, 73 L. biglobosa strains of canola stalks were collected from 12 provinces in China and subjected to re-sequencing. The 73 assemblies averaged 1340 contigs, 72,123 bp N50, and 30.17 Mb in size. In total, 9409 core orthogroups and 867 accessory orthogroups were identified. A total of 727,724 mutation loci were identified, including 695,230 SNPs and 32,494 indels. Principal component analysis (PCA) and population structure analysis showed that these strains could be divided into seven subgroups. The strains in most provinces were clustered into a single subgroup, suggesting a strong influence of the geographic environment on strain variation. The average nucleotide diversity (θπ) of all strains was 1.03 × 10-3, indicating important genetic diversity among strains from different regions of China. This study provides valuable resources for future comparative genomics, gives new insights into the population evolution of L. biglobosa, and supports the development of strategies for managing blackleg disease in canola.

2.
J Plant Physiol ; 294: 154187, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38422630

ABSTRACT

Rapeseed (Brassica napus L.) is one of the most important oil crops worldwide. However, its yield is greatly limited by salt stress, one of the primary abiotic stresses. Identification of salt-tolerance genes and breeding salt-tolerant varieties is an effective approach to address this issue. Unfortunately, little is known about the salt-tolerance quantitative trait locus (QTL) and the identification of salt tolerance genes in rapeseed. In this study, high-throughput quantitative trait locus sequencing (QTL-seq) was applied to identifying salt-tolerant major QTLs based on two DNA pools from an F2:3 population of a cross between rapeseed line 2205 (salt tolerant) and 1423 (salt sensitive). A total of twelve major QTLs related to the salt tolerance rating (STR) were detected on chromosomes A03, A08, C02, C03, C04, C06, C07 and C09. To further enhance our understanding, we integrated QTL-seq data with transcriptome analysis of the two parental rapeseed plants subjected to salt stress, through which ten candidate genes for salt tolerance were identified within the major QTLs by gene differential expression, variation and annotated functions analysis. The marker SNP820 linked to salt tolerance was successfully validated and would be useful as a diagnostic marker in marker-assisted breeding. These findings provide valuable insights for future breeding programs aimed at developing rapeseed cultivars resistant to salt stresses.


Subject(s)
Brassica napus , Quantitative Trait Loci , Quantitative Trait Loci/genetics , Chromosome Mapping , Brassica napus/genetics , Gene Expression Profiling , High-Throughput Nucleotide Sequencing
3.
Plant Cell Rep ; 42(6): 1039-1057, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37076701

ABSTRACT

KEY MESSAGE: Common loci and candidate genes for controlling salt-alkali tolerance and yield-related traits were identified in Brassica napus combining QTL mapping with transcriptome under salt and alkaline stresses. The yield of rapeseed (Brassica napus L.) is determined by multiple yield-related traits, which are susceptible to environmental factors. Many yield-related quantitative trait loci (QTLs) have been reported in Brassica napus; however, no studies have been conducted to investigate both salt-alkali tolerance and yield-related traits simultaneously. Here, specific-locus amplified fragment sequencing (SLAF-seq) technologies were utilized to map the QTLs for salt-alkali tolerance and yield-related traits. A total of 65 QTLs were identified, including 30 QTLs for salt-alkali tolerance traits and 35 QTLs for yield-related traits, accounting for 7.61-27.84% of the total phenotypic variations. Among these QTLs, 18 unique QTLs controlling two to four traits were identified by meta-analysis. Six novel and unique QTLs were detected for salt-alkali tolerance traits. By comparing these unique QTLs for salt-alkali tolerance traits with those previously reported QTLs for yield-related traits, seven co-localized chromosomal regions were identified on A09 and A10. Combining QTL mapping with transcriptome of two parents under salt and alkaline stresses, thirteen genes were identified as the candidates controlling both salt-alkali tolerance and yield. These findings provide useful information for future breeding of high-yield cultivars resistant to alkaline and salt stresses.


Subject(s)
Brassica napus , Brassica napus/genetics , Plant Breeding , Chromosome Mapping , Quantitative Trait Loci/genetics , Phenotype , Sodium Chloride
4.
Genes (Basel) ; 13(8)2022 08 21.
Article in English | MEDLINE | ID: mdl-36011404

ABSTRACT

Soil salt alkalization is one major abiotic factor reducing the productivity of crops, including rapeseed, an indispensable oil crop and vegetable. The mechanism studies of alkali salt tolerance can help breed highly resistant varieties. In the current study, rapeseed (B. napus) line 2205 exhibited more tolerance to alkaline salt than line 1423 did. In line 2205, the lesser plasma membrane damage index, the accumulated osmotic solute, and higher antioxidant enzyme activities contributed to alkaline tolerance. A more integrated mesophyll-cell structure was revealed under alkali salt stress by ultrastructure observation in line 2205, which also implied a lesser injury. Transcriptome analysis showed that more genes responded to alkaline salt in line 2205. The expression of specific-response genes in line 1423 was lower than in line 2205. However, most of the specific-response genes in line 2205 had higher expression, which was mainly enriched in carbohydrate metabolism, photosynthetic processes, ROS regulating, and response to salt stress. It can be seen that the tolerance to alkaline salt is attributed to the high expression of some genes in these pathways. Based on these, twelve cross-differentially expressed genes were proposed as candidates. They provide clues for further analysis of the resistance mechanism of rapeseed.


Subject(s)
Brassica napus , Alkalies/metabolism , Brassica napus/metabolism , Gene Expression Profiling , Gene Expression Regulation, Plant , Plant Breeding , Salt Tolerance/genetics , Stress, Physiological/genetics , Transcriptome/genetics
5.
Genes (Basel) ; 13(8)2022 07 22.
Article in English | MEDLINE | ID: mdl-35893035

ABSTRACT

Plasmodiophora brassicae infection leads to hypertrophy of host roots and subsequent formation of galls, causing huge economic losses to agricultural producers of Cruciferae plants. Ethylene (ET) has been reported to play a vital role against necrotrophic pathogens in the classic immunity system. More clues suggested that the defense to pathogens in roots may be different from the acrial. The ET pathway may play a positive role in the infection of P. brassicae, as shown by recent transcriptome profiling. However, the molecular basis of ET remains poorly understood. In this study, we investigated the potential role of ethylene against P. brassicae infection in an ein3/eil1 double-mutant of Arabidopsis thaliana (A. thaliana). After infection, ein3/eil1 (Disease Index/DI: 93) showed more susceptibility compared with wild type (DI: 75). Then, we inoculated A. thaliana Columbia-0 (Col-0) with P. brassicae by 1-aminocyclopropane-1-carboxylic acid (ACC) and pyrazinamide (PZA), respectively. It was found that the symptoms of infected roots with ACC were more serious than those with PZA at 20 dpi (day post infection). However, the DI were almost the same in different treatments at 30 dpi. WRKY75 can be directly regulated by ET and was upregulated at 7 dpi with ACC, as shown by qRT-PCR. The wrky75-c mutant of A. thaliana (DI: 93.75) was more susceptible than the wild type in Arabidopsis. Thus, our work reveals the dual roles of ET in infection of P. brassicae and provides evidence of ET in root defense against pathogens.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Plasmodiophorida , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Ethylenes/metabolism , Ethylenes/pharmacology , Plant Roots/genetics , Plant Roots/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL