Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.341
1.
Adv Sci (Weinh) ; : e2400023, 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38828688

The factors driving glioma progression remain poorly understood. Here, the epigenetic regulator TRIM24 is identified as a driver of glioma progression, where TRIM24 overexpression promotes HRasV12 anaplastic astrocytoma (AA) progression into epithelioid GBM (Ep-GBM)-like tumors. Co-transfection of TRIM24 with HRasV12 also induces Ep-GBM-like transformation of human neural stem cells (hNSCs) with tumor protein p53 gene (TP53) knockdown. Furthermore, TRIM24 is highly expressed in clinical Ep-GBM specimens. Using single-cell RNA-sequencing (scRNA-Seq), the authors show that TRIM24 overexpression impacts both intratumoral heterogeneity and the tumor microenvironment. Mechanically, HRasV12 activates phosphorylated adaptor for RNA export (PHAX) and upregulates U3 small nucleolar RNAs (U3 snoRNAs) to recruit Ku-dependent DNA-dependent protein kinase catalytic subunit (DNA-PKcs). Overexpressed TRIM24 is also recruited by PHAX to U3 snoRNAs, thereby facilitating DNA-PKcs phosphorylation of TRIM24 at S767/768 residues. Phosphorylated TRIM24 induces epigenome and transcription factor network reprogramming and promotes Ep-GBM-like transformation. Targeting DNA-PKcs with the small molecule inhibitor NU7441 synergizes with temozolomide to reduce Ep-GBM tumorigenicity and prolong animal survival. These findings provide new insights into the epigenetic regulation of Ep-GBM-like transformation and suggest a potential therapeutic strategy for patients with Ep-GBM.

2.
Planta ; 260(1): 16, 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38833022

MAIN CONCLUSION: A callus-specific CRISPR/Cas9 (CSC) system with Cas9 gene driven by the promoters of ZmCTA1 and ZmPLTP reduces somatic mutations and improves the production of heritable mutations in maize. The CRISPR/Cas9 system, due to its editing accuracy, provides an excellent tool for crop genetic breeding. Nevertheless, the traditional design utilizing CRISPR/Cas9 with ubiquitous expression leads to an abundance of somatic mutations, thereby complicating the detection of heritable mutations. We constructed a callus-specific CRISPR/Cas9 (CSC) system using callus-specific promoters of maize Chitinase A1 and Phospholipid transferase protein (pZmCTA1 and pZmPLTP) to drive Cas9 expression, and the target gene chosen for this study was the bZIP transcription factor Opaque2 (O2). The CRISPR/Cas9 system driven by the maize Ubiquitin promoter (pZmUbi) was employed as a comparative control. Editing efficiency analysis based on high-throughput tracking of mutations (Hi-TOM) showed that the CSC systems generated more target gene mutations than the ubiquitously expressed CRISPR/Cas9 (UC) system in calli. Transgenic plants were generated for the CSC and UC systems. We found that the CSC systems generated fewer target gene mutations than the UC system in the T0 seedlings but reduced the influence of somatic mutations. Nearly 100% of mutations in the T1 generation generated by the CSC systems were derived from the T0 plants. Only 6.3-16.7% of T1 mutations generated by the UC system were from the T0 generation. Our results demonstrated that the CSC system consistently produced more stable, heritable mutants in the subsequent generation, suggesting its potential application across various crops to facilitate the genetic breeding of desired mutations.


CRISPR-Cas Systems , Gene Editing , Mutation , Plants, Genetically Modified , Zea mays , Zea mays/genetics , Plants, Genetically Modified/genetics , Gene Editing/methods , Promoter Regions, Genetic/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , DNA-Binding Proteins
3.
PLoS Negl Trop Dis ; 18(6): e0012151, 2024 Jun 06.
Article En | MEDLINE | ID: mdl-38843297

BACKGROUND: Renal Syndrome Hemorrhagic Fever (HFRS) continues to pose a significant public health threat to the well-being of the population. Given that the spread of HFRS is susceptible to meteorological factors, we aim to probe into the meteorological drivers of HFRS. Thus, novel techniques that can discern time-delayed non-linear relationships from nonlinear dynamical systems are compulsory. METHODS: We analyze the epidemiological features of HFRS in Weifang City, 2011-2020, via the employment of the Empirical Dynamic Modeling (EDM) method. Our analysis delves into the intricate web of time-delayed non-linear associations between meteorological factors and HFRS. Additionally, we investigate the repercussions of minor perturbations in meteorological variables on future HFRS incidence. RESULTS: A total of 2515 HFRS cases were reported in Weifang from 2011 to 2020. The average weekly incidence was 4.81, and the average weekly incidence was 0.52 per 1,000,000. The propagation of HFRS is significantly impacted by the mean weekly temperature, relative humidity, cumulative rainfall, and wind speed, and the ρCCM converges to 0.55,0.48,0.38 and 0.39, respectively. The graphical representation of the relationship between temperature (lagged by 2 weeks) and the incidence of HFRS exhibits an inverted U-shaped curve, whereby the incidence of HFRS culminates as the temperature reaches 10 °C. Moreover, temperature, relative humidity, cumulative rainfall, and wind speed exhibit a positive correlation with HFRS incidence, with a time lag of 4-6 months. CONCLUSIONS: Our discoveries suggest that meteorological factors can drive the transmission of HFRS both at a macroscopic and microscopic scale. Prospective alterations in meteorological conditions, for instance, elevations in temperature, relative humidity, and precipitation will instigate an upsurge in the incidence of HFRS after 4-6 months, and thus, timely public health measures should be taken to mitigate these changes.

4.
J Am Heart Assoc ; 13(9): e034731, 2024 May 07.
Article En | MEDLINE | ID: mdl-38700011

BACKGROUND: Cardiac damage induced by ischemic stroke, such as arrhythmia, cardiac dysfunction, and even cardiac arrest, is referred to as cerebral-cardiac syndrome (CCS). Cardiac macrophages are reported to be closely associated with stroke-induced cardiac damage. However, the role of macrophage subsets in CCS is still unclear due to their heterogeneity. Sympathetic nerves play a significant role in regulating macrophages in cardiovascular disease. However, the role of macrophage subsets and sympathetic nerves in CCS is still unclear. METHODS AND RESULTS: In this study, a middle cerebral artery occlusion mouse model was used to simulate ischemic stroke. ECG and echocardiography were used to assess cardiac function. We used Cx3cr1GFPCcr2RFP mice and NLRP3-deficient mice in combination with Smart-seq2 RNA sequencing to confirm the role of macrophage subsets in CCS. We demonstrated that ischemic stroke-induced cardiac damage is characterized by severe cardiac dysfunction and robust infiltration of monocyte-derived macrophages into the heart. Subsequently, we identified that cardiac monocyte-derived macrophages displayed a proinflammatory profile. We also observed that cardiac dysfunction was rescued in ischemic stroke mice by blocking macrophage infiltration using a CCR2 antagonist and NLRP3-deficient mice. In addition, a cardiac sympathetic nerve retrograde tracer and a sympathectomy method were used to explore the relationship between sympathetic nerves and cardiac macrophages. We found that cardiac sympathetic nerves are significantly activated after ischemic stroke, which contributes to the infiltration of monocyte-derived macrophages and subsequent cardiac dysfunction. CONCLUSIONS: Our findings suggest a potential pathogenesis of CCS involving the cardiac sympathetic nerve-monocyte-derived macrophage axis.


Disease Models, Animal , Ischemic Stroke , Macrophages , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein , Animals , Macrophages/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/deficiency , Ischemic Stroke/physiopathology , Ischemic Stroke/metabolism , Ischemic Stroke/pathology , Receptors, CCR2/genetics , Receptors, CCR2/metabolism , Male , Mice, Knockout , Mice , Infarction, Middle Cerebral Artery/physiopathology , Infarction, Middle Cerebral Artery/pathology , Sympathetic Nervous System/physiopathology , Myocardium/pathology , Myocardium/metabolism , Heart Diseases/etiology , Heart Diseases/physiopathology , Heart Diseases/pathology , CX3C Chemokine Receptor 1/genetics , CX3C Chemokine Receptor 1/metabolism , CX3C Chemokine Receptor 1/deficiency
5.
Front Pharmacol ; 15: 1389873, 2024.
Article En | MEDLINE | ID: mdl-38751777

Background: In previous investigations, we explored the regulation of gastric function by hydrogen sulfide (H2S) and L-glutamate (L-Glu) injections in the nucleus ambiguus (NA). We also determined that both H2S and L-Glu have roles to play in the physiological activities of the body, and that NA is an important nucleus for receiving visceral sensations. The purpose of this study was to explore the potential pathway link between L-Glu and H2S, resulting in the regulation of gastric function. Methods: Physiological saline (PS), L-glutamate (L-Glu, 2 nmol), NaHS (2 nmol), D-2-amino-5-phopho-novalerate (D-AP5, 2 nmol) + L-Glu (2 nmol), aminooxyacetic acid (AOAA, 2 nmol) + L-Glu (2 nmol), D-AP5 (2 nmol) + NaHS (2 nmol) were injected into the NA. A balloon was inserted into the stomach to observe gastric pressure and for recording the changes of gastric smooth muscle contraction curve. The gastric fluid was collected by esophageal perfusion and for recording the change of gastric pH value. Results: Injecting L-Glu in NA was found to significantly inhibit gastric motility and promote gastric acid secretion in rats (p < 0.01). On the other hand, injecting the PS, pre-injection N-methyl-D-aspartate (NMDA) receptor blocker D-AP5, cystathionine beta-synthase (CBS) inhibitor AOAA and re-injection L-Glu did not result in significant changes (p > 0.05). The same injection NaHS significantly inhibit gastric motility and promote gastric acid secretion in rats (p < 0.01), but is eliminated by injection D-AP5 (p > 0.05). Conclusion: The results indicate that both exogenous L-Glu and H2S injected in NA regulate gastric motility and gastric acid secretion through NMDA receptors. This suggests that NA has an L-Glu-NMDA receptor-CBS-H2S pathway that regulates gastric function.

6.
Food Funct ; 2024 May 29.
Article En | MEDLINE | ID: mdl-38807501

Objectives: Previous preclinical evidence indicates a protective role of quercetin against inflammatory bowel disease (IBD). However, there is no evidence from human populations, resulting in knowledge gaps regarding the role of quercetin in the IBD development. We aimed to prospectively evaluate the associations between dietary quercetin intake and IBD in humans and in vivo animal models. Methods: We included 187 709 IBD-free participants from the UK Biobank. Dietary information was collected using validated 24-hour dietary recalls and the quercetin intake was estimated based on national nutrient databases. Incident IBD was ascertained via inpatient and primary care data. Cox proportional hazard models were used to estimate the multi-variable adjusted hazard ratios (aHRs) and 95% confidence intervals (CIs). Experiments were conducted in two chemical-induced (dextran sulfate sodium salt and trinitro-benzene-sulfonic acid) mouse models orally pretreated with quercetin (CAS number: 117-39-5) solution to evaluate the effects of quercetin at physiological levels. Results: After a mean follow-up of 9.7 years, we documented 863 incident IBD. Compared to participants with the lowest quintile intake of quercetin, those in the highest quintiles were associated with a lower risk of IBD (aHR 0.76, 95% CI 0.60-0.95; P-trend = 0.004) and ulcerative colitis (aHR 0.69, 95% CI 0.53-0.91; P-trend = 0.001), but not Crohn's disease (aHR 0.95, 95% CI 0.62-1.45; P-trend = 0.765). Mouse models showed that pretreatment with quercetin could attenuate the chemically induced colitis. Conclusions: Higher quercetin intake was associated with a lower risk of IBD, especially UC. The protective role of quercetin is promising in humans and warrants further investigation into downstream mechanisms.

7.
Zhongguo Zhong Yao Za Zhi ; 49(7): 1749-1761, 2024 Apr.
Article Zh | MEDLINE | ID: mdl-38812187

Shenling Baizhu San(SLBZS) is a commonly used medicine for the treatment of ulcerative colitis(UC). This study aims to explore the mechanism of SLBZS in treating UC by using colonic metabolomics and network pharmacology. BALB/c mice were randomly divided into four groups: a blank group, a model group, an SLBZS group, and a sulfasalazine group. UPLC-Q-TOF-MS/MS technology was utilized to analyze the metabolic profiles of colonic tissue in mice, and differential metabolites and related metabolic pathways were screened. Based on the online database, active ingredients, action targets, and UC disease targets of SLBZS were screened. The protein-protein interaction(PPI) network of core targets of SLBZS in treating UC was constructed using STRING and Cytoscape 3.9.1. Gene Ontology(GO) functional and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analyses were performed using the DAVID database. A "metabolite-reaction-enzyme-gene" network was constructed to conduct a combined analysis of metabolomics and network pharmacology. SLBZS reversed the levels of 25 metabolites involved in various pathways such as D-glutamine and D-glutamate metabolism, caffeine metabolism, sphingolipid metabolism, arginine biosynthesis, lysine degradation, alanine, aspartate, and glutamate metabolism, glycerophospholipid metabolism, and pyrimidine metabolism in UC colonic tissue. 47 core targets of SLBZS in treating UC were involved in pathways including the MAPK signaling pathway, TNF signaling pathway, Toll-like receptor signaling pathway, lipid and atherosclerosis, inflammatory bowel disease, and Th17 cell differentiation. Integrated analysis showed that glycerophospholipid metabolism and pyrimidine metabolism were key metabolic pathways in the treatment of UC with SLBZS. The results suggested that SLBZS improved colonic mucosal morphology by regulating colonic metabolites, down-regulated the expression of inflammation-related core target genes to reduce inflammation levels, and alleviated lipid metabolism disorders, thereby exerting a therapeutic effect on UC.


Colitis, Ulcerative , Colon , Drugs, Chinese Herbal , Metabolomics , Mice, Inbred BALB C , Network Pharmacology , Animals , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/genetics , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/administration & dosage , Mice , Colon/metabolism , Colon/drug effects , Male , Humans , Protein Interaction Maps
8.
J Agric Food Chem ; 72(19): 10842-10852, 2024 May 15.
Article En | MEDLINE | ID: mdl-38708761

Guvermectin, as a novel nucleoside-like biopesticide, could increase the rice yield excellently, but the potential environmental behaviors remain unclear, which pose potential health risks. Therefore, the uptake and biotransformation of guvermectin in three types of crops (rice, lettuce, and carrot) were first evaluated with a hydroponic system. Guvermectin could be rapidly absorbed and reached equilibrium in roots (12-36 h) and shoots (24-60 h) in three plants, and guvermectin was also vulnerable to dissipation in roots (t1/2 1.02-3.65 h) and shoots (t1/2 9.30-17.91 h). In addition, 8 phase I and 2 phase II metabolites, transformed from guvermectin degradation in vivo and in vitro exposure, were identified, and one was confirmed as psicofuranine, which had antibacterial and antitumor properties; other metabolites were nucleoside-like chemicals. Molecular simulation and quantitative polymerase chain reaction further demonstrated that guvermectin was metabolized by the catabolism pathway of an endogenous nucleotide. Guvermectin had similar metabolites in three plants, but the biotransformation ability had a strong species dependence. In addition, all the metabolites exhibit neglectable toxicities (bioconcentration factor <2000 L/kg b.w., LC50,rat > 5000 mg/kg b.w.) by prediction. The study provided valuable evidence for the application of guvermectin and a better understanding of the biological behavior of nucleoside-like pesticides.


Biotransformation , Daucus carota , Ivermectin , Lactuca , Oryza , Plant Roots , Ivermectin/metabolism , Ivermectin/analogs & derivatives , Plant Roots/metabolism , Plant Roots/chemistry , Plant Roots/growth & development , Lactuca/metabolism , Lactuca/chemistry , Lactuca/growth & development , Oryza/metabolism , Oryza/growth & development , Oryza/chemistry , Daucus carota/metabolism , Daucus carota/chemistry , Crops, Agricultural/metabolism , Crops, Agricultural/chemistry , Crops, Agricultural/growth & development
9.
ACS Appl Mater Interfaces ; 16(20): 26537-26546, 2024 May 22.
Article En | MEDLINE | ID: mdl-38739859

Water-stable organic radicals are promising photothermal conversion candidates for photothermal therapy (PTT). However, organic radicals are usually unstable in biological environments, which greatly hinders their wide application. Here, we have developed a chaotropic effect-based and photoinduced water-stable supramolecular radical (MB12-2) for efficient antibacterial PTT. The supramolecular radical precursor MB12-1 was constructed by the chaotropic effect between closo-dodecaborate cluster (B12H122-) and N,N'-dimethylated dipyridinium thiazolo [5,4-d] thiazole (MPT2+). Subsequently, with triethanolamine (TEOA) serving as an electron donor, MB12-1 could transform to its radical form MB12-2 through photoinduced electron transfer (PET) under 435-nm laser irradiation. The N2 adsorption-desorption analysis confirmed that MB12-2 was tightly packed through the introduction of B12H122-, which effectively enhanced its stability via a spatial site-blocked effect. Moreover, the half-life of MB12-2 in water was calculated through ultraviolet-visible light (UV-vis) absorption spectra results for periods as long as 20 days. In addition, in the skin infection model, MB12-2, as a wound dressing, showed remarkable photothermal antibacterial activity (>97%) under 660-nm laser irradiation and promoted wound healing. This study presents a simple method for designing long-term water-stable supramolecular radicals, offering a novel avenue for noncontact treatments for bacterial infections.


Anti-Bacterial Agents , Photothermal Therapy , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Animals , Water/chemistry , Mice , Free Radicals/chemistry , Boron/chemistry , Boron/pharmacology , Staphylococcus aureus/drug effects , Escherichia coli/drug effects
10.
J Neurosurg ; : 1-11, 2024 May 31.
Article En | MEDLINE | ID: mdl-38820614

OBJECTIVE: Craniocervical junction arteriovenous fistulas (CCJ-AVFs) are complex vascular shunts that present a challenge for treatment. The aim of this study was to compare the clinical outcomes of microsurgery and endovascular embolization for CCJ-AVFs and to determine whether the treatment approach affected the obliteration rate and neurological improvement. METHODS: The authors conducted a retrospective analysis of 64 patients who had undergone microsurgery or endovascular embolization for CCJ-AVF at one of two neurosurgical centers from January 2014 to February 2022. Additionally, a pooled analysis of 68 patients from 38 studies was performed. Baseline characteristics, angioarchitectural features, and clinical outcomes were compared between two treatment groups. A subgroup analysis of CCJ-AVFs with carotid artery (CA) feeders was also performed. RESULTS: In the multicenter cohort, the complete obliteration rate was 95.1% with microsurgery, 81.8% with embolization via the CA, and 50.0% with embolization via the vertebral artery (VA). After adjusting for baseline and confounding features, the occlusion rate was significantly lower in the VA embolization group (adjusted OR 41.06, 95% CI 2.37-711.9, p = 0.01). No new-onset infarctions occurred in the microsurgical group, whereas 1 patient each in the CA and VA embolization groups experienced posttreatment infarction. Microsurgery demonstrated a neurological improvement rate similar to that in the CA embolization group (65.9% vs 63.6%, respectively). In the subgroup analysis of CCJ-AVF with CA feeders in the multicenter cohort, the occlusion rate and neurological improvement in the CA embolization group were comparable to those in the microsurgery group. The subgroup analysis in the pooled analysis revealed complete obliteration rates of 100.0% in the microsurgical group, 88.9% in the CA embolization group, and 66.7% in the VA embolization group. CONCLUSIONS: This study supports microsurgery as the best treatment modality for CCJ-AVFs, exhibiting the highest rates of complete obliteration. Conversely, embolization via the VA can result in a lower occlusion rate and less neurological improvement. In CCJ-AVFs with CA feeders, embolization via the CA can be a safe and effective alternative to microsurgery.

11.
Am J Perinatol ; 2024 May 27.
Article En | MEDLINE | ID: mdl-38802079

OBJECTIVE: We aimed to investigate the relationship between admission hypothermia and outcomes among very preterm infants (VPIs) in neonatal intensive care units (NICUs) in China. We also investigated the frequency of hypothermia in VPIs in China and the variation in hypothermia across Chinese Neonatal Network (CHNN) sites. STUDY DESIGN: This retrospective cohort study enrolled infants with 240/7 to 316/7 weeks of gestation with an admission body temperature ≤37.5 °C who were admitted to CHNN-participating NICUs between January 1 and December 31, 2019. RESULTS: A total of 5,913 VPIs were included in this study, of which 4,075 (68.9%) had hypothermia (<36.5 °C) at admission. The incidence of admission hypothermia varied widely across CHNN sites (9-100%). Lower gestational age (GA), lower birth weight, antenatal steroid administration, multiple births, small for GA, Apgar scores <7 at the 5th minute, and intensive resuscitation were significantly associated with admission hypothermia. Compared with infants with normothermia (36.5-37.5 °C), the adjusted odds ratios (ORs) for composite outcome among infants with admission hypothermia <35.5 °C increased to 1.47 (95% confidence interval [CI], 1.15-1.88). The adjusted ORs for mortality among infants with admission hypothermia (36.0-36.4 and <35.5 °C) increased to 1.41 (95% CI, 1.09-1.83) and 1.93 (95% CI, 1.31-2.85), respectively. Admission hypothermia was associated with a higher likelihood of bronchopulmonary dysplasia, but was not associated with necrotizing enterocolitis ≥stage II, severe intraventricular hemorrhage, cystic periventricular leukomalacia, severe retinopathy of prematurity, or sepsis. CONCLUSION: Admission hypothermia remains a common problem for VPIs in a large cohort in China and is associated with adverse outcomes. Continuous quality improvement of admission hypothermia in the future may result in a substantial improvement in the outcomes of VPIs in China. KEY POINTS: · Admission hypothermia is common in VPIs.. · The incidence of admission hypothermia in VPIs remains high in China.. · Admission hypothermia is associated with adverse outcomes in VPIs..

12.
J Med Virol ; 96(5): e29647, 2024 May.
Article En | MEDLINE | ID: mdl-38708790

Invasive pulmonary aspergillosis (IPA) is a life-threatening complication in patients with severe fever with thrombocytopenia syndrome (SFTS), yet SFTS-associated IPA (SAPA)'s risk factors remain undefined. A multicenter retrospective cohort study across Hubei and Anhui provinces (May 2013-September 2022) utilized least absolute shrinkage and selection operator (LASSO) regression for variable selection. Multivariable logistic regression identified independent predictors of SAPA, Cox regression highlighted mortality-related risk factors. Of the 1775 screened SFTS patients, 1650 were included, with 169 developing IPA, leading to a 42-day mortality rate of 26.6% among SAPA patients. Multivariable logistic regression revealed SAPA risk factors including advanced age, petechia, hemoptysis, tremor, low albumin levels, elongated activated partial thromboplastin time (APTT), intensive care unit (ICU) admission, glucocorticoid usage, intravenous immunoglobulin (IVIG) and prolonged hospital stays. Cox regression identified predictors of 42-day mortality, including ecchymosis at venipuncture sites, absence of ICU admission, elongated prothrombin time (PT), vasopressor and glucocorticoid use, non-antifungals. Nomograms constructed on these predictors registered concordance indexes of 0.855 (95% CI: 0.826-0.884) and 0.778 (95% CI: 0.702-0.854) for SAPA onset and 42-day mortality, respectively. Lower survival rates for SAPA patients treated with glucocorticoids (p < 0.001) and improved 14-day survival with antifungal therapy (p = 0.036). Improving IPA management in SFTS-endemic areas is crucial, with effective predictive tool.


Invasive Pulmonary Aspergillosis , Severe Fever with Thrombocytopenia Syndrome , Humans , Retrospective Studies , Male , Female , Middle Aged , Risk Factors , Invasive Pulmonary Aspergillosis/mortality , Invasive Pulmonary Aspergillosis/complications , Invasive Pulmonary Aspergillosis/drug therapy , Severe Fever with Thrombocytopenia Syndrome/complications , Aged , China/epidemiology , Adult
13.
Transl Psychiatry ; 14(1): 210, 2024 May 27.
Article En | MEDLINE | ID: mdl-38802393

Atypical antipsychotics (AAPs) are primary medications for schizophrenia (SZ). However, their use is frequently associated with the development of adverse metabolic effects, and the mechanisms behind these negative effects remain inadequately elucidated. To investigate the role of macrophage migration inhibitory factor (MIF) in regulating antipsychotic-induced metabolic abnormalities, between 2017 and 2020, a cross-sectional study was conducted, involving 142 healthy individuals and 388 SZ patients undergoing treatment with either typical antipsychotic (TAP) or AAP medications. Symptoms of SZ patients were evaluated using the Positive and Negative Syndrome Scale (PANSS), and measurements of metabolic indices and plasma MIF levels were performed on all individuals. A significant increase in plasma MIF levels was observed in groups receiving five major AAP monotherapies in comparison to healthy controls (all p < 0.0001). There was no such increase shown in the group receiving TAP treatment (p > 0.05). Elevated plasma MIF levels displayed a notable correlation with insulin resistance (ß = 0.024, p = 0.020), as well as with the levels of triglycerides (ß = 0.019, p = 0.001) and total cholesterol (ß = 0.012, p = 0.038) in the groups receiving AAPs. However, while the TAP group also displayed certain metabolic dysfunction compared to healthy controls, no significant association was evident with plasma MIF levels (all p > 0.05). In conclusion, plasma MIF levels exhibit a distinctive correlation with metabolic abnormalities triggered by AAPs. Hence, there is potential for further development of MIF as a distinctive marker for monitoring adverse metabolic effects induced by AAPs in clinical settings.


Antipsychotic Agents , Intramolecular Oxidoreductases , Macrophage Migration-Inhibitory Factors , Schizophrenia , Humans , Macrophage Migration-Inhibitory Factors/blood , Male , Antipsychotic Agents/adverse effects , Antipsychotic Agents/therapeutic use , Female , Adult , Schizophrenia/drug therapy , Schizophrenia/blood , Cross-Sectional Studies , Intramolecular Oxidoreductases/blood , Middle Aged , Insulin Resistance , Case-Control Studies , Triglycerides/blood
14.
MedComm (2020) ; 5(5): e559, 2024 May.
Article En | MEDLINE | ID: mdl-38721006

RNA modification, especially RNA methylation, is a critical posttranscriptional process influencing cellular functions and disease progression, accounting for over 60% of all RNA modifications. It plays a significant role in RNA metabolism, affecting RNA processing, stability, and translation, thereby modulating gene expression and cell functions essential for proliferation, survival, and metastasis. Increasing studies have revealed the disruption in RNA metabolism mediated by RNA methylation has been implicated in various aspects of cancer progression, particularly in metabolic reprogramming and immunity. This disruption of RNA methylation has profound implications for tumor growth, metastasis, and therapy response. Herein, we elucidate the fundamental characteristics of RNA methylation and their impact on RNA metabolism and gene expression. We highlight the intricate relationship between RNA methylation, cancer metabolic reprogramming, and immunity, using the well-characterized phenomenon of cancer metabolic reprogramming as a framework to discuss RNA methylation's specific roles and mechanisms in cancer progression. Furthermore, we explore the potential of targeting RNA methylation regulators as a novel approach for cancer therapy. By underscoring the complex mechanisms by which RNA methylation contributes to cancer progression, this review provides a foundation for developing new prognostic markers and therapeutic strategies aimed at modulating RNA methylation in cancer treatment.

15.
J Inflamm Res ; 17: 3013-3029, 2024.
Article En | MEDLINE | ID: mdl-38764492

Purpose: Neonatal Acute Respiratory Distress Syndrome (NARDS) is a severe respiratory crisis threatening neonatal life. We aim to identify changes in the lung-gut microbiota and lung-plasma tryptophan metabolites in NARDS neonates to provide a differentiated tool and aid in finding potential therapeutic targets. Patients and Methods: Lower respiratory secretions, faeces and plasma were collected from 50 neonates including 25 NARDS patients (10 patients with mild NARDS in the NARDS_M group and 15 patients with moderate-to-severe NARDS in the NARDS_S group) and 25 control patients screened based on gestational age, postnatal age and birth weight. Lower airway secretions and feces underwent 16S rRNA gene sequencing to understand the microbial communities in the lung and gut, while lower airway secretions and plasma underwent LC-MS analysis to understand tryptophan metabolites in the lung and blood. Correlation analyses were performed by comparing differences in microbiota and tryptophan metabolites between NARDS and control, NARDS_S and NARDS_M groups. Results: Significant changes in lung and gut microbiota as well as lung and plasma tryptophan metabolites were observed in NARDS neonates compared to controls. Proteobacteria and Bacteroidota were increased in the lungs of NARDS neonates, whereas Firmicutes, Streptococcus, and Rothia were reduced. Lactobacillus in the lungs decreased in NARDS_S neonates. Indole-3-carboxaldehyde decreased in the lungs of NARDS neonates, whereas levels of 3-hydroxykynurenine, indoleacetic acid, indolelactic acid, 3-indole propionic acid, indoxyl sulfate, kynurenine, and tryptophan decreased in the lungs of the NARDS_S neonates. Altered microbiota was significantly related to tryptophan metabolites, with changes in lung microbiota and tryptophan metabolites having better differentiated ability for NARDS diagnosis and grading compared to gut and plasma. Conclusion: Significant changes occurred in the lung-gut microbiota and lung-plasma tryptophan metabolites of NARDS neonates. Alterations in lung microbiota and tryptophan metabolites were better discriminatory for the diagnosis and grading of NARDS.

16.
Micromachines (Basel) ; 15(5)2024 Apr 29.
Article En | MEDLINE | ID: mdl-38793168

The pigeon robot has attracted significant attention in the field of animal robotics thanks to its outstanding mobility and adaptive capability in complex environments. However, research on pigeon robots is currently facing bottlenecks, and achieving fine control over the motion behavior of pigeon robots through brain-machine interfaces remains challenging. Here, we systematically quantify the relationship between electrical stimulation and stimulus-induced motion behaviors, and provide an analytical method to demonstrate the effectiveness of pigeon robots based on electrical stimulation. In this study, we investigated the influence of gradient voltage intensity (1.2-3.0 V) on the indoor steering motion control of pigeon robots. Additionally, we discussed the response time of electrical stimulation and the effective period of the brain-machine interface. The results indicate that pigeon robots typically exhibit noticeable behavioral responses at a 2.0 V voltage stimulus. Increasing the stimulation intensity significantly controls the steering angle and turning radius (p < 0.05), enabling precise control of pigeon robot steering motion through stimulation intensity regulation. When the threshold voltage is reached, the average response time of a pigeon robot to the electrical stimulation is 220 ms. This study quantifies the role of each stimulation parameter in controlling pigeon robot steering behavior, providing valuable reference information for the precise steering control of pigeon robots. Based on these findings, we offer a solution for achieving precise control of pigeon robot steering motion and contribute to solving the problem of encoding complex trajectory motion in pigeon robots.

17.
Ann Biomed Eng ; 2024 May 25.
Article En | MEDLINE | ID: mdl-38796669

This study aimed to develop and validate a Computed Tomography (CT)/Magnetic Resonance Imaging (MRI)-compatible polymer oral retractor system to enable intraoperative image guidance for transoral robotic surgery (TORS). The retractor was designed based on standard-of-care metallic retractors and 3D (three-dimensional) printed with carbon fiber composite and nylon. The system was comprehensively evaluated in bench-top and cadaveric experiments in terms of its ability to enable intraoperative CT/MR images during TORS, functionality including surgical exposure and working volume, usability, compatibility with da Vinci surgical systems, feasibility for disinfection or sterilization, and robustness over an extended period of time. The polymer retractor system enabled the acquisition of high-resolution and artifact-free intraoperative CT/MR images during TORS. With an inter-incisive distance of 42.55 mm and a working volume of 200.09 cm3, it provided surgical exposure comparable to standard-of-care metallic retractors. The system proved intuitive and compatible with da Vinci S, Xi, and Single Port systems, enabling successful mock surgical tasks performed by surgeons and residents. The retractor components could be effectively disinfected or sterilized for clinical use without significant compromise in material strength, with STERRAD considered the optimal method. Throughout a 2 h mock procedure, the retractor system showed minimal displacements (<1.5 mm) due to surrounding tissue deformation, with insignificant device deformation. The 3D-printed polymer retractor system successfully enabled artifact-free intraoperative CT/MR imaging in TORS for the first time and demonstrated feasibility for clinical use. This breakthrough opens the door to surgical navigation with intraoperative image guidance in TORS, offering the potential to significantly improve surgical outcomes and patients' quality of life.

18.
bioRxiv ; 2024 Mar 13.
Article En | MEDLINE | ID: mdl-38559270

Mutant isocitrate dehydrogenase 1 (mIDH1; IDH1 R132H ) exhibits a gain of function mutation enabling 2-hydroxyglutarate (2HG) production. 2HG inhibits DNA and histone demethylases, inducing epigenetic reprogramming and corresponding changes to the transcriptome. We previously demonstrated 2HG-mediated epigenetic reprogramming enhances DNA-damage response and confers radioresistance in mIDH1 gliomas harboring p53 and ATRX loss of function mutations. In this study, RNA-seq and ChIP-seq data revealed human and mouse mIDH1 glioma neurospheres have downregulated gene ontologies related to mitochondrial metabolism and upregulated autophagy. Further analysis revealed that the decreased mitochondrial metabolism was paralleled by a decrease in glycolysis, rendering autophagy as a source of energy in mIDH1 glioma cells. Analysis of autophagy pathways showed that mIDH1 glioma cells exhibited increased expression of pULK1-S555 and enhanced LC3 I/II conversion, indicating augmented autophagy activity. This dependence is reflected by increased sensitivity of mIDH1 glioma cells to autophagy inhibition. Blocking autophagy selectively impairs the growth of cultured mIDH1 glioma cells but not wild-type IDH1 (wtIDH1) glioma cells. Targeting autophagy by systemic administration of synthetic protein nanoparticles packaged with siRNA targeting Atg7 (SPNP-siRNA-Atg7) sensitized mIDH1 glioma cells to radiation-induced cell death, resulting in tumor regression, long-term survival, and immunological memory, when used in combination with IR. Our results indicate autophagy as a critical pathway for survival and maintenance of mIDH1 glioma cells, a strategy that has significant potential for future clinical translation. One Sentence Summary: The inhibition of autophagy sensitizes mIDH1 glioma cells to radiation, thus creating a promising therapeutic strategy for mIDH1 glioma patients. Graphical abstract: Our genetically engineered mIDH1 mouse glioma model harbors IDH1 R132H in the context of ATRX and TP53 knockdown. The production of 2-HG elicited an epigenetic reprogramming associated with a disruption in mitochondrial activity and an enhancement of autophagy in mIDH1 glioma cells. Autophagy is a mechanism involved in cell homeostasis related with cell survival under energetic stress and DNA damage protection. Autophagy has been associated with radio resistance. The inhibition of autophagy thus radio sensitizes mIDH1 glioma cells and enhances survival of mIDH1 glioma-bearing mice, representing a novel therapeutic target for this glioma subtype with potential applicability in combined clinical strategies.

19.
Mol Cancer ; 23(1): 77, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38627681

Emerging tumor immunotherapy methods encompass bispecific antibodies (BSABs), immune checkpoint inhibitors (ICIs), and adoptive cell immunotherapy. BSABs belong to the antibody family that can specifically recognize two different antigens or epitopes on the same antigen. These antibodies demonstrate superior clinical efficacy than monoclonal antibodies, indicating their role as a promising tumor immunotherapy option. Immune checkpoints are also important in tumor immunotherapy. Programmed cell death protein-1 (PD-1) is a widely acknowledged immune checkpoint target with effective anti-tumor activity. PD-1 inhibitors have demonstrated notable therapeutic efficacy in treating hematological and solid tumors; however, more than 50% of patients undergoing this treatment exhibit a poor response. However, ICI-based combination therapies (ICI combination therapies) have been demonstrated to synergistically increase anti-tumor effects and immune response rates. In this review, we compare the clinical efficacy and side effects of BSABs and ICI combination therapies in real-world tumor immunotherapy, aiming to provide evidence-based approaches for clinical research and personalized tumor diagnosis and treatment.


Antibodies, Bispecific , Neoplasms , Humans , Antibodies, Bispecific/adverse effects , Immune Checkpoint Inhibitors/adverse effects , Neoplasms/drug therapy , Antibodies, Monoclonal/therapeutic use , Immunotherapy/adverse effects , Immunotherapy/methods
20.
Zhongguo Gu Shang ; 37(4): 381-6, 2024 Apr 25.
Article Zh | MEDLINE | ID: mdl-38664209

OBJECTIVE: CT scans combined with Mimics software were used to measure femoral offset (FO), rotation center height (RCH) and lower leg length discrepancy (LLD) following total hip arthroplasty (THA), and the relationship between FO, RCH and LLD after THA is discussed. METHODS: Retrospective analysis was performed on 40 patients with unilateral THA who met standard cases from October 2020 to June 2022. There were 21 males and 19 females, 18 patients on the left side and 22 patients on the right side, aged range from 30 to 81 years old, with an average age of (58.90 ±14.13) years old, BMI ranged from 17.3 to 31.5 kg·m-2 with an average of (25.3±3.4) kg·m-2. There were 30 cases of femoral head necrosis (Ficat type Ⅳ), 2 cases of hip osteoarthritis (Tönnis type Ⅲ), 2 cases of developmental hip dislocation combined with end-stage osteoarthritis (Crowe type Ⅲ), and 6 cases of femoral neck fracture (Garden type Ⅳ). Three-dimensional CT reconstruction of pelvis was taken preoperative and postoperative, and three-dimensional reconstruction model was established after processing by Mimics software. FO, RCH and LLD were measured on the model. The criteria for FO reconstruction were as follows:postoperative bilateral FO difference less than 5 mm;the standard for equal length of both lower limbs was as follows:postoperative LLD difference less than 5 mm. RESULTS: Bilateral FO difference was positively correlated with LLD (r=0.744, P<0.001). Chi-square test was performed between the FO reconstructed group and the non-reconstructed eccentricity group:The results showed that the isometric ratio of lower limbs in the FO reconstructed group was significantly higher than that in the FO reconstructed group (χ2=6.320, P=0.012). The bilateral RCH difference was significantly negatively correlated with LLD(r=-0.877, P<0.001). There is a linear relationship between bilateral FO difference and bilateral RCH difference and postoperative LLD, and the linear regression equation is satisfied:postoperative LLD=0.038x-0.099y+0.257(x:postoperative bilateral FO difference, y:postoperative bilateral RCH difference; Unit:cm), F=77.993, R2=0.808, P=0.009. CONCLUSION: After THA, LLD increased with the increase of FO and decreased with the increase of RCH. The effect of lower limb isometric length can be obtained more easily by reconstruction of FO. There is a linear relationship between the bilateral FO difference and the bilateral RCH difference after THA and LLD, and the regression equation can provide a theoretical reference for judging LLD.


Arthroplasty, Replacement, Hip , Femur , Leg Length Inequality , Humans , Male , Female , Leg Length Inequality/etiology , Aged , Middle Aged , Arthroplasty, Replacement, Hip/methods , Aged, 80 and over , Retrospective Studies , Adult , Femur/surgery , Tomography, X-Ray Computed , Rotation , Osteoarthritis, Hip/surgery , Osteoarthritis, Hip/etiology
...