Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 36
1.
Cardiovasc Diabetol ; 23(1): 160, 2024 May 07.
Article En | MEDLINE | ID: mdl-38715043

BACKGROUND: Diabetic cardiomyopathy (DCM) is a crucial complication of long-term chronic diabetes that can lead to myocardial hypertrophy, myocardial fibrosis, and heart failure. There is increasing evidence that DCM is associated with pyroptosis, a form of inflammation-related programmed cell death. Growth differentiation factor 11 (GDF11) is a member of the transforming growth factor ß superfamily, which regulates oxidative stress, inflammation, and cell survival to mitigate myocardial hypertrophy, myocardial infarction, and vascular injury. However, the role of GDF11 in regulating pyroptosis in DCM remains to be elucidated. This research aims to investigate the role of GDF11 in regulating pyroptosis in DCM and the related mechanism. METHODS AND RESULTS: Mice were injected with streptozotocin (STZ) to induce a diabetes model. H9c2 cardiomyocytes were cultured in high glucose (50 mM) to establish an in vitro model of diabetes. C57BL/6J mice were preinjected with adeno-associated virus 9 (AAV9) intravenously via the tail vein to specifically overexpress myocardial GDF11. GDF11 attenuated pyroptosis in H9c2 cardiomyocytes after high-glucose treatment. In diabetic mice, GDF11 alleviated cardiomyocyte pyroptosis, reduced myocardial fibrosis, and improved cardiac function. Mechanistically, GDF11 inhibited pyroptosis by preventing inflammasome activation. GDF11 achieved this by specifically binding to apoptosis-associated speck-like protein containing a CARD (ASC) and preventing the assembly and activation of the inflammasome. Additionally, the expression of GDF11 during pyroptosis was regulated by peroxisome proliferator-activated receptor α (PPARα). CONCLUSION: These findings demonstrate that GDF11 can treat diabetic cardiomyopathy by alleviating pyroptosis and reveal the role of the PPARα-GDF11-ASC pathway in DCM, providing ideas for new strategies for cardioprotection.


Diabetes Mellitus, Experimental , Diabetic Cardiomyopathies , Fibrosis , Growth Differentiation Factors , Inflammasomes , Mice, Inbred C57BL , Myocytes, Cardiac , Pyroptosis , Signal Transduction , Animals , Pyroptosis/drug effects , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/pathology , Diabetic Cardiomyopathies/prevention & control , Diabetic Cardiomyopathies/etiology , Diabetic Cardiomyopathies/physiopathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Myocytes, Cardiac/drug effects , Diabetes Mellitus, Experimental/metabolism , Cell Line , Inflammasomes/metabolism , Male , Growth Differentiation Factors/metabolism , Rats , Blood Glucose/metabolism , Mice , Glucose/metabolism , Glucose/toxicity , Bone Morphogenetic Proteins , PPAR alpha
2.
Foods ; 13(7)2024 Mar 31.
Article En | MEDLINE | ID: mdl-38611375

The traditional process of producing Zhenjiang aromatic vinegar faces challenges such as high water usage, wastewater generation, raw material losses, and limitations in mechanization and workshop conditions. This study introduces and evaluates a novel dry gelatinization process, focusing on fermentation efficiency and the vinegar flavor profile. The new process shows a 39.1% increase in alcohol conversion efficiency and a 14% higher yield than the traditional process. Vinegar produced through the dry gelatinization process has a stronger umami taste and a higher lactic acid concentration. Both processes detected 33 volatile substances, with the dry gelatinization process showing a notably higher concentration of 2-methylbutanal, which imparts a distinct fruity and chocolate aroma. These findings suggest that the dry gelatinization process outperforms the traditional process in several aspects.

3.
Insights Imaging ; 15(1): 42, 2024 Feb 14.
Article En | MEDLINE | ID: mdl-38353771

PURPOSE: The aim of this study was to diminish radiation exposure in interventional radiology (IR) imaging while maintaining image quality. This was achieved by decreasing the acquisition frame rate and employing a deep neural network to interpolate the reduced frames. METHODS: This retrospective study involved the analysis of 1634 IR sequences from 167 pediatric patients (March 2014 to January 2022). The dataset underwent a random split into training and validation subsets (at a 9:1 ratio) for model training and evaluation. Our approach proficiently synthesized absent frames in simulated low-frame-rate sequences by excluding intermediate frames from the validation subset. Accuracy assessments encompassed both objective experiments and subjective evaluations conducted by nine radiologists. RESULTS: The deep learning model adeptly interpolated the eliminated frames within IR sequences, demonstrating encouraging peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM) results. The average PSNR values for angiographic, subtraction, and fluoroscopic modes were 44.94 dB, 34.84 dB, and 33.82 dB, respectively, while the corresponding SSIM values were 0.9840, 0.9194, and 0.7752. Subjective experiments conducted with experienced interventional radiologists revealed minimal discernible differences between interpolated and authentic sequences. CONCLUSION: Our method, which interpolates low-frame-rate IR sequences, has shown the capability to produce high-quality IR images. Additionally, the model exhibits potential for reducing the frame rate during IR image acquisition, consequently mitigating radiation exposure. CRITICAL RELEVANCE STATEMENT: This study presents a critical advancement in clinical radiology by demonstrating the effectiveness of a deep neural network in reducing radiation exposure during pediatric interventional radiology while maintaining image quality, offering a potential solution to enhance patient safety. KEY POINTS: • Reducing radiation: cutting IR image to reduce radiation. • Accurate frame interpolation: our model effectively interpolates missing frames. • High visual quality in terms of PSNR and SSIM, making IR procedures safer without sacrificing quality.

4.
Small ; 20(11): e2309025, 2024 Mar.
Article En | MEDLINE | ID: mdl-37890449

Transition metal-based sulfides exhibit remarkable potential as electrocatalysts for oxygen evolution reaction (OER) due to the unique intrinsic structure and physicochemical characteristics. Nevertheless, currently available sulfide catalysts based on transition metals face a bottleneck in large-scale commercial applications owing to their unsatisfactory stability. Here, the first fabrication of (FeCoNiMn2 )S2 dual-phase medium-entropy metal sulfide (dp-MEMS) is successfully achieved, which demonstrated the expected optimization of stability in the OER process. Benefiting from the "cell wall" -like structure and the synergistic effect in medium-entropy systems, (FeCoNiMn2 )S2 dp-MEMS delivers an exceptionally low overpotential of 169 and 232 mV at current densities of 10 and 100 mA cm-2 , respectively. The enhancement mechanism of catalytic activity and stability is further validated by density functional theory (DFT) calculations. Additionally, the rechargeable Zn-air batteries integrated with FeCoNiMn2 )S2 dp-MEMS exhibit remarkable performance outperforming the commercial catalyst (Pt/C+RuO2 ). This work demonstrates that the dual-phase medium-entropy metal sulfide-based catalysts have the potential to provide a greater application value for OER and related energy conversion systems.

5.
Cancers (Basel) ; 15(23)2023 Nov 21.
Article En | MEDLINE | ID: mdl-38067206

In this comprehensive survey, we delve into the multifaceted role of palmitoylation across various cell death modalities in the oncological context, from its intricate correlations with tumorigenesis, steered by the Asp-His-His-Cys tetrapeptide motif (DHHC) family, to the counter-process of depalmitoylation mediated by enzymes like Palmitoyl protein thioesterase-1 (PPT1). Innovations in detection methodologies have paralleled our growing understanding, transitioning from rudimentary techniques to sophisticated modern methods. Central to our discourse are agents like Ezurpimtrostat (GNS561) and dimeric chloroquine (DC661), promising heralds in palmitoylation-targeted cancer therapy. Collectively, this review accentuates palmitoylation's transformative potential in oncology, foreshadowing groundbreaking therapeutic strategies and deepening our molecular comprehension of cancer dynamics.

6.
Food Funct ; 14(23): 10605-10616, 2023 Nov 27.
Article En | MEDLINE | ID: mdl-37961950

Asthma, a chronic airway inflammatory disease, has a complicated pathogenesis and limited therapeutic treatment. Evidence shows that the intestinal microbiota exhibits crucial functional interaction with asthma syndrome. Liubao tea (LBT), a type of postfermented tea in China, positively modulates gut microbiota. However, the potential benefits of LBT extract (LBTE) for allergic asthma are still not understood. Herein, the anti-inflammatory effects of LBTE and its modulation of the gut microbiota of asthmatic mice induced by ovalbumin were explored. The results demonstrate that LBTE significantly inhibited airway hyper-responsiveness and restrained the proliferation of proinflammatory cytokines and inflammatory cells associated with allergic asthma. Additionally, LBTE suppressed inflammatory infiltration, mucus secretion, and excessive goblet cell production by downregulating the gene expression of inflammatory indicators. Interestingly, fecal microbiota transplantation results further implied that the modulation of LBTE on gut microbiota played an essential role in alleviating airway inflammatory symptoms of allergic asthma.


Asthma , Gastrointestinal Microbiome , Animals , Mice , Ovalbumin/adverse effects , Asthma/metabolism , Cytokines/metabolism , Tea/metabolism , Mice, Inbred BALB C , Disease Models, Animal , Lung , Bronchoalveolar Lavage Fluid
7.
Med Image Anal ; 90: 102973, 2023 Dec.
Article En | MEDLINE | ID: mdl-37757643

In the field of medical image analysis, accurate lesion segmentation is beneficial for the subsequent clinical diagnosis and treatment planning. Currently, various deep learning-based methods have been proposed to deal with the segmentation task. Albeit achieving some promising performances, the fully-supervised learning approaches require pixel-level annotations for model training, which is tedious and time-consuming for experienced radiologists to collect. In this paper, we propose a weakly semi-supervised segmentation framework, called Point Segmentation Transformer (Point SEGTR). Particularly, the framework utilizes a small amount of fully-supervised data with pixel-level segmentation masks and a large amount of weakly-supervised data with point-level annotations (i.e., annotating a point inside each object) for network training, which largely reduces the demand of pixel-level annotations significantly. To fully exploit the pixel-level and point-level annotations, we propose two regularization terms, i.e., multi-point consistency and symmetric consistency, to boost the quality of pseudo labels, which are then adopted to train a student model for inference. Extensive experiments are conducted on three endoscopy datasets with different lesion structures and several body sites (e.g., colorectal and nasopharynx). Comprehensive experimental results finely substantiate the effectiveness and the generality of our proposed method, as well as its potential to loosen the requirements of pixel-level annotations, which is valuable for clinical applications.

8.
Front Oncol ; 13: 1168870, 2023.
Article En | MEDLINE | ID: mdl-37588089

Background: Transbronchial lung biopsy guided by radial probe endobronchial ultrasonography with a guide sheath (EBUS-GS-TBLB) is becoming a significant approach for diagnosing peripheral pulmonary lesions (PPLs). We aimed to explore the clinical value of the resistance of the probe to pass through the lesion in the diagnosis of PPLs when performing EBUS-GS-TBLB, and to determine the optimum number of EBUS-GS-TBLB. Methods: We performed a prospective, single-center study of 126 consecutive patients who underwent EBUS-GS-TBLB for solid and positive-bronchus-sign PPLs where the probe was located within the lesion from September 2019 to May 2022. The classification of probe resistance for each lesion was carried out by two bronchoscopists independently, and the final result depended on the bronchoscopist responsible for the procedures. The primary endpoint was the diagnostic yield according with the resistance pattern. The secondary endpoints were the optimum number of EBUS-GS-TBLB and factors affecting diagnostic yield. Procedural complications were also recorded. Results: The total diagnostic yield of EBUS-GS-TBLB was 77.8%, including 83.8% malignant and 67.4% benign diseases (P=0.033). Probe resistance type II displayed the highest diagnostic yield (87.5%), followed by type III (81.0%) and type I (61.1%). A significant difference between the diagnostic yield of malignant and benign diseases was detected in type II (P = 0.008), whereas others did not. Although most of the malignant PPLs with a definitive diagnosis using EBUS-GS-TBLB in type II or type III could be diagnosed in the first biopsy, the fourth biopsy contributed the most sufficient biopsy samples. In contrast, considerably limited tissue specimens could be obtained for each biopsy in type I. The inter-observer agreement of the two blinded bronchoscopists for the classification of probe resistance was excellent (κ = 0.84). Conclusion: The probe resistance is a useful predictive factor for successful EBUS-GS-TBLB diagnosis of solid and positive-bronchus-sign PPLs where the probe was located within the lesion. Four serial biopsies are appropriate for both probe resistance type II and type III, and additional diagnostic procedures are needed for type I.

9.
Front Physiol ; 14: 1123182, 2023.
Article En | MEDLINE | ID: mdl-37650112

Uremic toxins are chemicals, organic or inorganic, that accumulate in the body fluids of individuals with acute or chronic kidney disease and impaired renal function. More than 130 uremic solutions are included in the most comprehensive reviews to date by the European Uremic Toxins Work Group, and novel investigations are ongoing to increase this number. Although approaches to remove uremic toxins have emerged, recalcitrant toxins that injure the human body remain a difficult problem. Herein, we review the derivation and elimination of uremic toxins, outline kidney-gut axis function and relative toxin removal methods, and elucidate promising approaches to effectively remove toxins.

10.
Sensors (Basel) ; 23(14)2023 Jul 12.
Article En | MEDLINE | ID: mdl-37514625

China is the largest producer and consumer of rice, and the classification of filled/unfilled rice grains is of great significance for rice breeding and genetic analysis. The traditional method for filled/unfilled rice grain identification was generally manual, which had the disadvantages of low efficiency, poor repeatability, and low precision. In this study, we have proposed a novel method for filled/unfilled grain classification based on structured light imaging and Improved PointNet++. Firstly, the 3D point cloud data of rice grains were obtained by structured light imaging. And then the specified processing algorithms were developed for the single grain segmentation, and data enhancement with normal vector. Finally, the PointNet++ network was improved by adding an additional Set Abstraction layer and combining the maximum pooling of normal vectors to realize filled/unfilled rice grain point cloud classification. To verify the model performance, the Improved PointNet++ was compared with six machine learning methods, PointNet and PointConv. The results showed that the optimal machine learning model is XGboost, with a classification accuracy of 91.99%, while the classification accuracy of Improved PointNet++ was 98.50% outperforming the PointNet 93.75% and PointConv 92.25%. In conclusion, this study has demonstrated a novel and effective method for filled/unfilled grain recognition.

11.
Plant Methods ; 19(1): 75, 2023 Jul 29.
Article En | MEDLINE | ID: mdl-37516875

BACKGROUND: Verticillium wilt is the major disease of cotton, which would cause serious yield reduction and economic losses, and the identification of cotton verticillium wilt is of great significance to cotton research. However, the traditional method is still manual, which is subjective, inefficient, and labor-intensive, and therefore, this study has proposed a novel method for cotton verticillium wilt identification based on spectral and image feature fusion. The cotton hyper-spectral images have been collected, while the regions of interest (ROI) have been extracted as samples including 499 healthy leaves and 498 diseased leaves, and the average spectral information and RGB image of each sample were obtained. In spectral feature processing, the preprocessing methods including Savitzky-Golay smoothing (SG), multiplicative scatter correction (MSC), de-trending (DT) and mean normalization (MN) algorithms have been adopted, while the feature band extraction methods have adopted principal component analysis (PCA) and successive projections algorithm (SPA). In RGB image feature processing, the EfficientNet was applied to build classification model and 16 image features have been extracted from the last convolutional layer. And then, the obtained spectral and image features were fused, while the classification model was established by support vector machine (SVM) and back propagation neural network (BPNN). Additionally, the spectral full bands and feature bands were used as comparison for SVM and BPNN classification respectively. RESULT: The results showed that the average accuracy of EfficientNet for cotton verticillium wilt identification was 93.00%. By spectral full bands, SG-MSC-BPNN model obtained the better performance with classification accuracy of 93.78%. By feature bands, SG-MN-SPA-BPNN model obtained the better performance with classification accuracy of 93.78%. By spectral and image fused features, SG-MN-SPA-FF-BPNN model obtained the best performance with classification accuracy of 98.99%. CONCLUSIONS: The study demonstrated that it was feasible and effective to use fused spectral and image features based on hyper-spectral imaging to improve identification accuracy of cotton verticillium wilt. The study provided theoretical basis and methods for non-destructive and accurate identification of cotton verticillium wilt.

13.
Crit Rev Food Sci Nutr ; : 1-13, 2023 May 09.
Article En | MEDLINE | ID: mdl-37158176

The growth of bacteria and fungi may cause disease inf human or spoilage of food. New antimicrobial substances need to be discovered. Lactoferricin (LFcin) is a group of antimicrobial peptides derived from the N-terminal region of the milk protein lactoferrin (LF). LFcin has antimicrobial ability against a variety of microorganisms, which is significantly better than that of its parent version. Here, we review the sequences, structures, and antimicrobial activities of this family and elucidated the motifs of structural and functional significance, as well as its application in food. Using sequence and structural similarity searches, we identified 43 new LFcins from the mammalian LFs deposited in the protein databases, which are grouped into six families according to their origins (Primates, Rodentia, Artiodactyla, Perissodactyla, Pholidota, and Carnivora). This work expands the LFcin family and will facilitate further characterization of novel peptides with antimicrobial potential. Considering the antimicrobial effect of LFcin on foodborne pathogens, we describe the application of these peptides from the prospective of food preservation.

14.
Nanotechnology ; 34(31)2023 May 16.
Article En | MEDLINE | ID: mdl-37130511

In this work, the effects of top electrode (TE) and bottom electrode (BE) on the ferroelectric properties of zirconia-based Zr0.75Hf0.25O2(ZHO) thin films annealed by post-deposition annealing (PDA) are investigated in detail. Among W/ZHO/BE capacitors (BE = W, Cr or TiN), W/ZHO/W delivered the highest ferroelectric remanent polarization and the best endurance performance, revealing that the BE with a smaller coefficient of thermal expansion (CTE) plays a vital role in enhancing the ferroelectricity of fluorite-structure ZHO. For TE/ZHO/W structures (TE = W, Pt, Ni, TaN or TiN), the stability of TE metals seems to have a larger impact on the performance over their CTE values. This work provides a guideline to modulate and optimize the ferroelectric performance of PDA-treated ZHO-based thin films.

15.
Cereb Cortex ; 33(14): 9067-9078, 2023 07 05.
Article En | MEDLINE | ID: mdl-37218647

Menopause may be an important pathogenic factor for Alzheimer's disease (AD). The M1 polarization of microglia and neuroinflammatory responses occur in the early pathogenetic stages of AD. Currently, no effective monitoring markers are available for AD's early pathological manifestations. Radiomics is an automated feature generation method for the extraction of hundreds of quantitative phenotypes (radiomics features) from radiology images. In this study, we retrospectively analyzed the magnetic resonance T2-weighted imaging (MR-T2WI) on the temporal lobe region and clinical data of both premenopausal and postmenopausal women. There were three significant differences were identified for select radiomic features in the temporal lobe between premenopausal and postmenopausal women, i.e. the texture feature Original-glcm-Idn (OI) based on the Original image, the filter-based first-order feature Log-firstorder-Mean (LM), and the texture feature Wavelet-LHH-glrlm-Run Length Nonuniformity (WLR). In humans, these three features were significantly correlated with the timing of menopause. In mice, these features were also different between the sham and ovariectomy (OVX) groups and were significantly associated with neuronal damage, microglial M1 polarization, neuroinflammation, and cognitive decline in the OVX groups. In AD patients, OI was significantly associated with cognitive decline, while LM was associated with anxiety and depression. OI and WLR could distinguish AD from healthy controls. In conclusion, radiomics features based on brain MR-T2WI scans have the potential to serve as biomarkers for AD and noninvasive monitoring of pathological progression in the temporal lobe of the brain in women undergoing menopause.


Alzheimer Disease , Humans , Female , Animals , Mice , Alzheimer Disease/diagnostic imaging , Retrospective Studies , Magnetic Resonance Imaging/methods , Biomarkers , Temporal Lobe/diagnostic imaging , Magnetic Resonance Spectroscopy , Menopause
16.
Acta Otolaryngol ; 143(2): 185-190, 2023 Feb.
Article En | MEDLINE | ID: mdl-36780311

BACKGROUND: In China, reports on the epidemiology of adenocarcinomas of the nasal cavity and paranasal sinuses are limited. AIM: This study aimed to describe the experience of a single institution in China in treating these malignant tumours. MATERIALS AND METHODS: We conducted a retrospective chart review of patients with adenocarcinoma of the nasal cavity and paranasal sinuses admitted between January 2019 and December 2021. Tumour staging was based on the American Joint Committee on Cancer, 8th edition, for sinonasal malignancies. RESULTS: The series included 10 men and 4 women (mean age, 54.5 [range, 14-80] years). Epistaxis and nasal obstruction were the most common clinical manifestations in 10 (71.4%) patients. Ten (71.4%) had stage T4 disease at diagnosis, but no patient had lymph node or distant metastasis. The posterosuperior septum (100.0%) and middle turbinate (92.8%) were the two sites most vulnerable to tumour invasion. All patients underwent endoscopic resection as the initial treatment; one patient died. CONCLUSIONS AND SIGNIFICANCE: In China, these malignancies are related to exposure to certain substances; however, diagnosis can be delayed. Endoscopic resection is a suitable treatment option for adenocarcinomas of the nasal cavity and paranasal sinuses.


Adenocarcinoma , Nose Neoplasms , Paranasal Sinus Neoplasms , Paranasal Sinuses , Male , Humans , Female , Middle Aged , Nose Neoplasms/diagnosis , Nose Neoplasms/epidemiology , Nose Neoplasms/surgery , Paranasal Sinus Neoplasms/epidemiology , Paranasal Sinus Neoplasms/surgery , Retrospective Studies , Paranasal Sinuses/pathology , Adenocarcinoma/epidemiology , Adenocarcinoma/surgery
17.
Food Microbiol ; 111: 104207, 2023 May.
Article En | MEDLINE | ID: mdl-36681394

Nisin is a posttranslationally modified antimicrobial peptide that is widely used as a food preservative. It contains five cyclic thioethers of varying sizes. Nisin activity and stability are closely related to its primary and three dimensional structures. It has nine reported natural variants. Nisin A is the most studied nisin as it was the first one purified. Here, we review the sequence feature of nisin A and its natural variants, and their biosynthesis pathway, mode of action and application as a meat preservative. We systematically illustrate the functional domains of the main enzymes (NisB, NisC, and NisP) involved in nisin synthesis. NisB was shown to dehydrate its substrate NisA via a tRNA associated glutamylation mechanism. NisC catalysed the cyclization of the didehydro amino acids with the neighboring cysteine residues. After cyclization, the leader peptide is removed by the protease NisP. According to multiple sequence alignments, we detected five conserved sites Dha5, Pro9, Gly14, Leu16, and Lys22. These residues are probably the structural and functional important ones that can be modified to produce peptides versions with enhanced antimicrobial activity. Through comparing various application methods of nisin in different meats, the antimicrobial effects of nisin used individually or in combination with other natural substances were clarified.


Anti-Infective Agents , Food Preservation , Lactococcus lactis , Meat , Nisin , Anti-Infective Agents/metabolism , Bacterial Proteins/metabolism , Lactococcus lactis/metabolism , Membrane Proteins , Nisin/pharmacology , Nisin/chemistry , Meat/microbiology
18.
J Phys Chem Lett ; 14(5): 1156-1164, 2023 Feb 09.
Article En | MEDLINE | ID: mdl-36709444

Amorphous metal-organic framework (MOF) materials have drawn extensive interest in the design of high-performance electrocatalysts for use in the electrochemical oxygen evolution reaction. However, there are limitations to the utilization of amorphous MOFs due to their low electrical conductivity and unsatisfactory stability. Herein, a novel amorphous-crystalline (AC) heterostructure is successfully constructed by synthesizing a crystalline metal sulfide (MS)-embedded amorphous Ni0.67Fe0.33-MOF, namely an MS/Ni0.67Fe0.33-MOF. It exhibits excellent catalytic performance (a low overpotential of 248 mV at 10 mA cm-2 with a small Tafel slope of 50 mV decade-1), durability, and stability (only 8% degradation of the current density at a constant voltage after 24 h). This work thus sheds light on the engineering of highly efficient catalysts with AC heterointerfaces for optimizing water-splitting systems.

19.
Int J Med Robot ; 19(1): e2474, 2023 Feb.
Article En | MEDLINE | ID: mdl-36331902

BACKGROUND: Transoral robotic surgery (TORS) is a reliable, minimally invasive approach for treating recurrent nasopharyngeal carcinoma (rNPC). However, tumours involving the internal carotid artery (ICA) are considered to be unsuitable for TORS. This paper presents the first case of transoral robotic resection of advanced rNPC involving the ICA. MATERIALS AND METHODS: This case is a 55 year-old male patient who received radiotherapy 27 years ago. This patient underwent a standard TORS resection 2 weeks after ipsilateral ICA embolization. RESULTS: Postoperative Magnetic resonance imaging and biopsy results indicated total resection. During the 2 month follow-up, no severe complications were found, and the primary site was tumour-free. CONCLUSION: This study preliminarily presents the feasibility and efficiency of advanced rNPC resection with TORS. TORS can potentially provide better quality of life for patients as a less invasive approach than current endoscopic surgery. Even so, the surgical approach should be selected strictly according to the tumour's location.


Nasopharyngeal Neoplasms , Robotic Surgical Procedures , Male , Humans , Middle Aged , Robotic Surgical Procedures/methods , Nasopharyngeal Carcinoma/surgery , Carotid Artery, Internal/diagnostic imaging , Carotid Artery, Internal/surgery , Quality of Life , Nasopharyngeal Neoplasms/diagnostic imaging , Nasopharyngeal Neoplasms/surgery
20.
Int J Med Robot ; 19(2): e2471, 2023 Apr.
Article En | MEDLINE | ID: mdl-36251333

PURPOSE: Endoscopic sinus surgery (ESS) has been recognized as an effective treatment modality for paranasal sinus diseases. Over the past decade, continuum robots (CRs) for ESS have been studied, but there are still some challenges. This paper presents a review on the scientific studies of CRs for ESS. METHODS: Based on the analysis of the anatomical structure of the paranasal sinus, the requirements of CRs for ESS are discussed. Recent studies on rigid robots, handheld flexible robots, and CRs for ESS are presented. Surgical path planning, navigation, and control are also included. RESULTS: Concentric tube CRs and cable-driven CRs have great potential for applications in ESS. The CRs incorporated with multiple replaceable arms with different functions are preferable in ESS. CONCLUSION: Further study on navigation and control is required to improve the performance of CRs for ESS.


Paranasal Sinuses , Rhinitis , Robotics , Sinusitis , Humans , Sinusitis/surgery , Rhinitis/surgery , Chronic Disease , Paranasal Sinuses/surgery , Treatment Outcome , Endoscopy
...