Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-37021988

ABSTRACT

Tensor completion (TC) refers to restoring the missing entries in a given tensor by making use of the low-rank structure. Most existing algorithms have excellent performance in Gaussian noise or impulsive noise scenarios. Generally speaking, the Frobenius-norm-based methods achieve excellent performance in additive Gaussian noise, while their recovery severely degrades in impulsive noise. Although the algorithms using the lp -norm ( ) or its variants can attain high restoration accuracy in the presence of gross errors, they are inferior to the Frobenius-norm-based methods when the noise is Gaussian-distributed. Therefore, an approach that is able to perform well in both Gaussian noise and impulsive noise is desired. In this work, we use a capped Frobenius norm to restrain outliers, which corresponds to a form of the truncated least-squares loss function. The upper bound of our capped Frobenius norm is automatically updated using normalized median absolute deviation during iterations. Therefore, it achieves better performance than the lp -norm with outlier-contaminated observations and attains comparable accuracy to the Frobenius norm without tuning parameter in Gaussian noise. We then adopt the half-quadratic theory to convert the nonconvex problem into a tractable multivariable problem, that is, convex optimization with respect to (w.r.t.) each individual variable. To address the resultant task, we exploit the proximal block coordinate descent (PBCD) method and then establish the convergence of the suggested algorithm. Specifically, the objective function value is guaranteed to be convergent while the variable sequence has a subsequence converging to a critical point. Experimental results based on real-world images and videos exhibit the superiority of the devised approach over several state-of-the-art algorithms in terms of recovery performance. MATLAB code is available at https://github.com/Li-X-P/Code-of-Robust-Tensor-Completion.

2.
IEEE Trans Cybern ; 53(11): 7199-7212, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37015578

ABSTRACT

Matrix completion (MC) aims at recovering missing entries, given an incomplete matrix. Existing algorithms for MC are mainly designed for noiseless or Gaussian noise scenarios and, thus, they are not robust to impulsive noise. For outlier resistance, entry-wise lp -norm with and M-estimation are two popular approaches. Yet the optimum selection of p for the entrywise lp -norm-based methods is still an open problem. Besides, M-estimation is limited by a breakdown point, that is, the largest proportion of outliers. In this article, we adopt entrywise l0 -norm, namely, the number of nonzero entries in a matrix, to separate anomalies from the observed matrix. Prior to separation, the Laplacian kernel is exploited for outlier detection, which provides a strategy to automatically update the entrywise l0 -norm penalty parameter. The resultant multivariable optimization problem is addressed by block coordinate descent (BCD), yielding l0 -BCD and l0 -BCD-F. The former detects and separates outliers, as well as its convergence is guaranteed. In contrast, the latter attempts to treat outlier-contaminated elements as missing entries, which leads to higher computational efficiency. Making use of majorization-minimization (MM), we further propose l0 -BCD-MM and l0 -BCD-MM-F for robust non-negative MC where the nonnegativity constraint is handled by a closed-form update. Experimental results of image inpainting and hyperspectral image recovery demonstrate that the suggested algorithms outperform several state-of-the-art methods in terms of recovery accuracy and computational efficiency.

3.
IEEE Trans Neural Netw Learn Syst ; 34(12): 10930-10943, 2023 Dec.
Article in English | MEDLINE | ID: mdl-35576417

ABSTRACT

Sparse index tracking, as one of the passive investment strategies, is to track a benchmark financial index via constructing a portfolio with a few assets in a market index. It can be considered as parameter learning in an adaptive system, in which we periodically update the selected assets and their investment percentages based on the sliding window approach. However, many existing algorithms for sparse index tracking cannot explicitly and directly control the number of assets or the tracking error. This article formulates sparse index tracking as two constrained optimization problems and then proposes two algorithms, namely, nonnegative orthogonal matching pursuit with projected gradient descent (NNOMP-PGD) and alternating direction method of multipliers for l0 -norm (ADMM- l0 ). The NNOMP-PGD aims at minimizing the tracking error subject to the number of selected assets less than or equal to a predefined number. With the NNOMP-PGD, investors can directly and explicitly control the number of selected assets. The ADMM- l0 aims at minimizing the number of selected assets subject to the tracking error that is upper bounded by a preset threshold. It can directly and explicitly control the tracking error. The convergence of the two proposed algorithms is also presented. With our algorithms, investors can explicitly and directly control the number of selected assets or the tracking error of the resultant portfolio. In addition, numerical experiments demonstrate that the proposed algorithms outperform the existing approaches.

4.
Article in English | MEDLINE | ID: mdl-35895648

ABSTRACT

Inspired by sparse learning, the Markowitz mean-variance model with a sparse regularization term is popularly used in sparse portfolio optimization. However, in penalty-based portfolio optimization algorithms, the cardinality level of the resultant portfolio relies on the choice of the regularization parameter. This brief formulates the mean-variance model as a cardinality ( l0 -norm) constrained nonconvex optimization problem, in which we can explicitly specify the number of assets in the portfolio. We then use the alternating direction method of multipliers (ADMMs) concept to develop an algorithm to solve the constrained nonconvex problem. Unlike some existing algorithms, the proposed algorithm can explicitly control the portfolio cardinality. In addition, the dynamic behavior of the proposed algorithm is derived. Numerical results on four real-world datasets demonstrate the superiority of our approach over several state-of-the-art algorithms.

SELECTION OF CITATIONS
SEARCH DETAIL