Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 788
Filter
1.
Phys Rev Lett ; 133(3): 033603, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39094163

ABSTRACT

Cat-state qubits formed by photonic cat states have a biased noise channel, i.e., one type of error dominates over all the others. We demonstrate that such biased-noise qubits are also promising for error-tolerant simulations of the quantum Rabi model (and its varieties) by coupling a cat-state qubit to an optical cavity. Using the cat-state qubit can effectively enhance the counterrotating coupling, allowing us to explore several fascinating quantum phenomena relying on the counterrotating interaction. Moreover, another benefit from biased-noise cat qubits is that the two main error channels (frequency and amplitude mismatches) are both exponentially suppressed. Therefore, the simulation protocols are robust against parameter errors of the parametric drive that determines the projection subspace. We analyze three examples: (i) collapse and revivals of quantum states; (ii) hidden symmetry and tunneling dynamics; and (iii) pair-cat-code computation.

2.
J Hazard Mater ; 478: 135421, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39126853

ABSTRACT

To eliminate the epidemic of coal-burning-borne endemic arsenism (CBBA), our study organized and implemented comprehensive measures including high-arsenic coal ban, improved cook-stoves, and health education. We also aimed to promote the application value of these measures in preventing and controlling CBBA to the world. From 2004 to 2005, through a stratified random sampling method, we selected 58,256 individuals to investigate the prevalence of CBBA and the arsenic levels in 1287 environmental and biological specimens. The prevalence of CBBA was 19.26 % and significantly associated with the arsenic levels in coal, pepper, corn and hair, which were at or exceeded national upper limits. To timely prevent and control the disease, the comprehensive measures have been implemented since 2005 to present. Comparison and correlation analyses were utilized to evaluate the effectiveness of these measures in reducing the prevalence of CBBA. According to statistics, 73 high-arsenic coal mines were banned and over 99 % households in endemic areas accepted stove improvements and diversified health education. Monitoring studies during 2010-2019 has confirmed that these measures led to a decrease in urine arsenic levels among endemic residents, and they developed novel dietary practices, such as properly drying, storage, and washing of food. Additionally, the awareness rate of CBBA increased from less than 70 % to over 95 %. Finally, the prevalence of CBBA has decreased to 0.153 % investigated by a census involving 2.076 million endemic residents in 2019. In summary, CBBA in northwest China has been successfully controlled through banning on high-arsenic coal, introducing improved cook-stoves, and providing health education.

3.
J Immunother Cancer ; 12(7)2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39067874

ABSTRACT

BACKGROUND: Patients with breast cancer brain metastases (BCBM) experience a rapid decline in their quality of life. Recently, tertiary lymphoid structures (TLSs), analogs of secondary lymphoid organs, have attracted extensive attention. However, the potential clinical implications of TLSs in BCBMs are poorly understood. In this study, we evaluated the density and composition of TLSs in BCBMs and described their prognostic value. METHODS: Clinicopathological data were collected from 98 patients (2015-2021). TLSs were evaluated, and a TLS scoring system was constructed. Differences in progression-free survival (PFS) and overall survival (OS) between groups were calculated using the Kaplan-Meier method. Immunohistochemistry and multiplex immunofluorescence (mIF) were used to assess TLSs heterogeneity. RESULTS: TLSs were identified in 47 patients with BCBM. High TLSs density indicated favorable survival (OS, p=0.003; PFS, p<0.001). TLS was positively associated with OS (p=0.0172) and PFS (p=0.0161) in the human epidermal growth factor receptor type 2-positive subtype, and with prolonged OS (p=0.0482) in the triple-negative breast cancer subtype. The mIF results showed significant differences in the percentages of T follicular helper (Tfh) cells, M2 macrophages, cytotoxic T lymphocytes, and CD8+TIM-3+ T lymphocytes between the groups of TLS scores 0-3 (cytotoxic T lymphocytes, p=0.044; Tfh, p=0.021; M2 macrophages, p=0.033; CD8+TIM-3+ T lymphocytes, p=0.018). Furthermore, novel nomograms incorporating the TLS scores and other clinicopathological predictors demonstrated prominent predictability of the 1-year, 3-year, and 5-year outcomes of BCBMs (area under the curve >0.800). CONCLUSION: Our results highlight the impact of TLSs abundance on the OS and PFS of patients with BCBM. Additionally, we described the immune composition of TLSs and proposed novel nomograms to predict the prognosis of patients with BCBM.


Subject(s)
Brain Neoplasms , Breast Neoplasms , Tertiary Lymphoid Structures , Humans , Female , Tertiary Lymphoid Structures/immunology , Tertiary Lymphoid Structures/pathology , Breast Neoplasms/pathology , Breast Neoplasms/immunology , Breast Neoplasms/mortality , Brain Neoplasms/secondary , Brain Neoplasms/immunology , Brain Neoplasms/mortality , Middle Aged , Prognosis , Adult , Aged
4.
Mol Inform ; : e202300336, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-39031899

ABSTRACT

Kinases, a class of enzymes controlling various substrates phosphorylation, are pivotal in both physiological and pathological processes. Although their conserved ATP binding pockets pose challenges for achieving selectivity, this feature offers opportunities for drug repositioning of kinase inhibitors (KIs). This study presents a cost-effective in silico prediction of KIs drug repositioning via analyzing cross-docking results. We established the KIs database (278 unique KIs, 1834 bioactivity data points) and kinases database (357 kinase structures categorized by the DFG motif) for carrying out cross-docking. Comparative analysis of the docking scores and reported experimental bioactivity revealed that the Atypical, TK, and TKL superfamilies are suitable for drug repositioning. Among these kinase superfamilies, Olverematinib, Lapatinib, and Abemaciclib displayed enzymatic activity in our focused AKT-PI3K-mTOR pathway with IC50 values of 3.3, 3.2 and 5.8 µM. Further cell assays showed IC50 values of 0.2, 1.2 and 0.6 µM in tumor cells. The consistent result between prediction and validation demonstrated that repositioning KIs via in silico method is feasible.

5.
Cell Death Dis ; 15(7): 483, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38969650

ABSTRACT

Hepatocellular carcinoma (HCC) is one of the most common malignant tumors, and the expression and function of an uncharacterized protein RNF214 in HCC are still unknown. Phase separation has recently been observed to participate in the progression of HCC. In this study, we investigated the expression, function, and phase separation of RNF214 in HCC. We found that RNF214 was highly expressed in HCC and associated with poor prognosis. RNF214 functioned as an oncogene to promote the proliferation, migration, and metastasis of HCC. Mechanically, RNF214 underwent phase separation, and the coiled-coil (CC) domain of RNF214 mediated its phase separation. Furthermore, the CC domain was necessary for the oncogenic function of RNF214 in HCC. Taken together, our data favored that phase separation of RNF214 promoted the progression of HCC. RNF214 may be a potential biomarker and therapeutic target for HCC.


Subject(s)
Carcinoma, Hepatocellular , Cell Proliferation , Disease Progression , Liver Neoplasms , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/pathology , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Humans , Cell Line, Tumor , Animals , Cell Movement/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Male , Mice, Nude , Mice , Gene Expression Regulation, Neoplastic , Female , Mice, Inbred BALB C , Middle Aged , Phase Separation
6.
Article in English | MEDLINE | ID: mdl-38995342

ABSTRACT

BACKGROUND: Infections caused by Klebsiella pneumoniae are common and result in high mortality rates. In vitro studies demonstrated the potency of cefoperazone/sulbactam (CPZ/SUL) against Klebsiella pneumoniae. However, the clinical efficacy of CPZ/SUL for the treatment of K. pneumoniae bacteremia has not been studied. OBJECTIVES: This study aimed to associate the clinical outcomes of patients with bacteremia with the minimal inhibitory concentrations (MICs) of CPZ/SUL against the causative K. pneumoniae isolates. METHODS: This multicenter, retrospective study was conducted in Taiwan between July 2017 and April 2021. Patients with K. pneumoniae bacteremia treated with CPZ/SUL were enrolled in this study. CPZ/SUL MICs were determined using the agar dilution method. Data on the patients' clinical outcomes and characteristics were collected and analyzed. RESULTS: In total, 201 patients were enrolled. Among the causative K. pneumoniae isolates, 180 (89.5%) were susceptible to CPZ/SUL. Most patients (n = 156, 77.6%) had favorable outcomes. The 30-day mortality rate was 11.9% (n = 24). Multivariate risk analyses showed that higher APACHE II score (Odds Ratio [OR], 1.14; Confidence Interval [CI], 1.07-1.21; p < 0.001), metastatic tumors (OR, 5.76; CI, 2.31-14.40; p < 0.001), and causative K. pneumoniae CPZ/SUL MICs > 16 µg/ml (OR, 4.30; CI, 1.50-12.27; p = 0.006) were independently associated with unfavorable outcomes. CONCLUSION: Patients with K. pneumoniae bacteremia treated with CPZ/SUL at a ratio 1:1 had favorable outcomes when the CPZ/SUL MICs were ≤ 16 µg/ml. Patients with higher APACHE II scores and metastatic tumors had unfavorable outcomes.

7.
Mol Biol Evol ; 41(7)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38842255

ABSTRACT

The origins and extreme morphological evolution of the modern dog breeds are poorly studied because the founder populations are extinct. Here, we analyse eight 100 to 200 years old dog fur samples obtained from traditional North Swedish clothing, to explore the origin and artificial selection of the modern Nordic Lapphund and Elkhound dog breeds. Population genomic analysis confirmed the Lapphund and Elkhound breeds to originate from the local dog population, and showed a distinct decrease in genetic diversity in agreement with intense breeding. We identified eleven genes under positive selection during the breed development. In particular, the MSRB3 gene, associated with breed-related ear morphology, was selected in all Lapphund and Elkhound breeds, and functional assays showed that a SNP mutation in the 3'UTR region suppresses its expression through miRNA regulation. Our findings demonstrate analysis of near-modern dog artifacts as an effective tool for interpreting the origin and artificial selection of the modern dog breeds.


Subject(s)
Animal Fur , Selection, Genetic , Animals , Dogs/genetics , Polymorphism, Single Nucleotide , Breeding , Sweden , Genetic Variation , MicroRNAs/genetics
8.
Biophys J ; 123(13): 1869-1881, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38835167

ABSTRACT

Cell mechanics are pivotal in regulating cellular activities, diseases progression, and cancer development. However, the understanding of how cellular viscoelastic properties vary in physiological and pathological stimuli remains scarce. Here, we develop a hybrid self-similar hierarchical theory-microrheology approach to accurately and efficiently characterize cellular viscoelasticity. Focusing on two key cell types associated with livers fibrosis-the capillarized liver sinusoidal endothelial cells and activated hepatic stellate cells-we uncover a universal two-stage power-law rheology characterized by two distinct exponents, αshort and αlong. The mechanical profiles derived from both exponents exhibit significant potential for discriminating among diverse cells. This finding suggests a potential common dynamic creep characteristic across biological systems, extending our earlier observations in soft tissues. Using a tailored hierarchical model for cellular mechanical structures, we discern significant variations in the viscoelastic properties and their distribution profiles across different cell types and states from the cytoplasm (elastic stiffness E1 and viscosity η), to a single cytoskeleton fiber (elastic stiffness E2), and then to the cell level (transverse expansion stiffness E3). Importantly, we construct a logistic-regression-based machine-learning model using the dynamic parameters that outperforms conventional cell-stiffness-based classifiers in assessing cell states, achieving an area under the curve of 97% vs. 78%. Our findings not only advance a robust framework for monitoring intricate cell dynamics but also highlight the crucial role of cellular viscoelasticity in discerning cell states across a spectrum of liver diseases and prognosis, offering new avenues for developing diagnostic and therapeutic strategies based on cellular viscoelasticity.


Subject(s)
Elasticity , Viscosity , Biomechanical Phenomena , Animals , Endothelial Cells/cytology , Endothelial Cells/metabolism , Hepatic Stellate Cells/cytology , Hepatic Stellate Cells/metabolism , Rheology , Humans , Models, Biological , Liver/cytology , Machine Learning
9.
Future Sci OA ; 10(1): FSO928, 2024.
Article in English | MEDLINE | ID: mdl-38827810

ABSTRACT

Aim: Current head and neck squamous cell carcinoma (HNSCC) diagnostic tools are limited, so this study aimed to identify diagnostic microRNA (miRNA) biomarkers from plasma. Materials & methods: A total of 76 HNSCC and 76 noncancerous control (NC) plasma samples underwent microarray analysis and quantitative reverse transcription PCR to screen for diagnostic plasma miRNAs. The diagnostic potential of the miRNAs was evaluated by the receiver operating characteristic curve. Results: miR-95-3p and miR-579-5p expression was shown to be significantly upregulated, and that of miR-1298-3p to be downregulated in HNSCC patients compared with controls. The final diagnostic panel included miR-95-3p, miR-579-5p and miR-1298-3p with an area under the curve of 0.83. Conclusion: This three-miRNA panel has potential for the diagnosis of HNSCC.


Early detection of head and neck cancer is crucial. In this study, we established a diagnostic model based on blood samples. This is a convenient diagnostic and screening tool that can help people early detect head and neck cancer.

10.
Front Pharmacol ; 15: 1393693, 2024.
Article in English | MEDLINE | ID: mdl-38855753

ABSTRACT

Colorectal cancer is a common malignant tumor with high mortality, for which chemotherapy resistance is one of the main reasons. The high expression of ABCG2 in the cancer cells and expulsion of anticancer drugs directly cause multidrug resistance (MDR). Therefore, the development of new ABCG2 inhibitors that block the active causes of MDR may provide a strategy for the treatment of colorectal cancer. In this study, we find that dorsomorphin (also known as compound C or BML-275) potently inhibits the transporter activity of ABCG2, thereby preserving the chemotherapeutic agents mitoxantrone and doxorubicin to antagonize MDR in ABCG2-overexpressing colorectal cancer cells. Additionally, dorsomorphin does not alter ABCG2 protein expression. The results of molecular docking studies show that dorsomorphin is bound stably to the ABCG2-binding pocket, suggesting that dorsomorphin is a potent ABCG2 inhibitor that attenuates ABCG2-mediated MDR in colorectal cancer.

11.
Anim Cells Syst (Seoul) ; 28(1): 237-250, 2024.
Article in English | MEDLINE | ID: mdl-38741950

ABSTRACT

The role of ferroptosis-associated gene SLC7A11 in esophageal cancer progression is largely unknown, therefore, the effects of blocking SLC7A11 on esophageal squamous cell carcinoma (ESCC) cells are evaluated. Results showed that SLC7A11 was overexpressed in ESCC tissues both in mRNA and protein levels. Blocking SLC7A11 using Erastin suppressed the proliferation and colony formation of ESCC cells, decreased cellular ATP levels, and improved ROS production. Sixty-three SLC7A11-binding proteins were identified using the IP-MS method, and these proteins were enriched in four signaling pathways, including spliceosome, ribosome, huntington disease, and diabetic cardiomyopathy. The deubiquitinase inhibitors PR-619, GRL0617, and P 22077 could reduce at least 40% protein expression level of SLC7A11 in ESCC cells, and PR-619 and GRL0617 exhibited suppressive effects on the cell viability and colony formation ability of KYSE30 cells, respectively. Erastin downregulated GPX4 and DHODH and also reduced the levels of ß-catenin, p-STAT3, and IL-6 in ESCC cells. In conclusion, SLC7A11 was overexpressed in ESCC, and blocking SLC7A11 using Erastin mitigated malignant phenotypes of ESCC cells and downregulated key ferroptosis-associated molecules GPX4 and DHODH. The therapeutic potential of targeting SLC7A11 should be further evaluated in the future.

12.
World J Gastrointest Oncol ; 16(5): 1995-2005, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38764807

ABSTRACT

BACKGROUND: Limited knowledge exists regarding the casual associations linking blood metabolites and the risk of developing colorectal cancer. AIM: To investigate causal associations between blood metabolites and colon cancer. METHODS: The study utilized a two-sample Mendelian randomization (MR) analysis to investigate the causal impact of 486 blood metabolites on colorectal cancer. The primary method of analysis used was the inverse variance weighted model. To further validate the results several sensitivity analyses were performed, including Cochran's Q test, MR-Egger intercept test, and MR robust adjusted profile score. These additional analyses were conducted to ensure the reliability and robustness of the findings. RESULTS: After rigorous selection for genetic variation, 486 blood metabolites were included in the MR analysis. We found Mannose [odds ratio (OR) = 2.09 (1.10-3.97), P = 0.024], N-acetylglycine [OR = 3.14 (1.78-5.53), P = 7.54 × 10-8], X-11593-O-methylascorbate [OR = 1.68 (1.04-2.72), P = 0.034], 1-arachidonoylglycerophosphocholine [OR = 4.23 (2.51-7.12), P = 6.35 × 10-8] and 1-arachidonoylglycerophosphoethanolamine 4 [OR = 3.99 (1.17-13.54), P = 0.027] were positively causally associated with colorectal cancer, and we also found a negative causal relationship between Tyrosine [OR = 0.08 (0.01-0.63), P = 0.014], Urate [OR = 0.25 (0.10-0.62), P = 0.003], N-acetylglycine [0.73 (0.54-0.98), P = 0.033], X-12092 [OR = 0.89 (0.81-0.99), P = 0.028], Succinylcarnitine [OR = 0.48 (0.27-0.84), P = 0.09] with colorectal cancer. A series of sensitivity analyses were performed to confirm the rigidity of the results. CONCLUSION: This study showed a causal relationship between 10 blood metabolites and colorectal cancer, of which 5 blood metabolites were found to be causal for the development of colorectal cancer and were confirmed as risk factors. The other five blood metabolites are protective factors.

13.
Inorg Chem ; 63(23): 10786-10797, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38772008

ABSTRACT

To date, developing crystalline proton-conductive metal-organic frameworks (MOFs) with an inherent excellent proton-conducting ability and structural stability has been a critical priority in addressing the technologies required for sustainable development and energy storage. Bearing this in mind, a multifunctional organic ligand, 3,4-dimethylthiophene[2,3-b]thiophene-2,5-dicarboxylic acid (H2DTD), was employed to generate two exceptionally stable three-dimensional porous Zr/Hf MOFs, [Zr6O4(OH)4(DTD)6]·5DMF·H2O (Zr-DTD) and [Hf6O4(OH)4(DTD)6]·4DMF·H2O (Hf-DTD), using solvothermal means. The presence of Zr6 or Hf6 nodes, strong Zr/Hf-O bonds, the electrical influence of the methyl group, and the steric effect of the thiophene unit all contribute to their structural stability throughout a wide pH range as well as in water. Their proton conductivity was fully examined at various relative humidities (RHs) and temperatures. Creating intricate and rich H-bonded networks between the guest water molecules, coordination solvent molecules, thiophene-S, -COOH, and -OH units within the framework assisted proton transfer. As a result, both MOFs manifest the maximum proton conductivity of 0.67 × 10-2 and 4.85 × 10-3 S·cm-1 under 98% RH/100 °C, making them the top-performing proton-conductive Zr/Hf-MOFs. Finally, by combining structural characteristics and activation energies, potential proton conduction pathways for the two MOFs were identified.

14.
Cancers (Basel) ; 16(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38730692

ABSTRACT

Pediatric brain tumors are often noted to be different from their adult counterparts in terms of molecular features. Primary CNS lymphomas (PCNSLs) are mostly found in elderly adults and are uncommon in children and teenagers. There has only been scanty information about the molecular features of PCNSLs at a young age. We examined PCNSLs in 34 young patients aged between 7 and 39 years for gene rearrangements of BCl2, BCL6, CCND1, IRF4, IGH, IGL, IGK, and MYC, homozygous deletions (HD) of CDKN2A, and HLA by FISH. Sequencing was performed using WES, panel target sequencing, or Sanger sequencing due to the small amount of available tissues. The median OS was 97.5 months and longer than that for older patients with PCNSLs. Overall, only 14 instances of gene rearrangement were found (5%), and patients with any gene rearrangement were significantly older (p = 0.029). CDKN2A HD was associated with a shorter OS (p < 0.001). Only 10/31 (32%) showed MYD88 mutations, which were not prognostically significant, and only three of them were L265P mutations. CARD11 mutations were found in 8/24 (33%) cases only. Immunophenotypically, the cases were predominantly GCB, in contrast to older adults (61%). In summary, we showed that molecular findings identified in the PCNSLs of the older patients were only sparingly present in pediatric and young adult patients.

15.
Eur J Med Chem ; 271: 116435, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38648728

ABSTRACT

Multiple myeloma (MM), a cancer of plasma cells, is the second most common hematological malignancy which is characterized by aberrant plasma cells infiltration in the bone marrow and complex heterogeneous cytogenetic abnormalities. Over the past two decades, novel treatment strategies such as proteasome inhibitors, immunomodulators, and monoclonal antibodies have significantly improved the relative survival rate of MM patients. However, the development of drug resistance results in the majority of MM patients suffering from relapse, limited treatment options and uncontrolled disease progression after relapse. There are urgent needs to develop and explore novel MM treatment strategies to overcome drug resistance and improve efficacy. Here, we review the recent small molecule therapeutic strategies for MM, and introduce potential new targets and corresponding modulators in detail. In addition, this paper also summarizes the progress of multi-target inhibitor therapy and protein degradation technology in the treatment of MM.


Subject(s)
Antineoplastic Agents , Drug Resistance, Neoplasm , Multiple Myeloma , Small Molecule Libraries , Multiple Myeloma/drug therapy , Multiple Myeloma/pathology , Humans , Drug Resistance, Neoplasm/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Proteasome Inhibitors/pharmacology , Proteasome Inhibitors/chemistry , Proteasome Inhibitors/therapeutic use , Molecular Structure
17.
Inorg Chem ; 63(18): 8194-8205, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38639416

ABSTRACT

Although crystalline metal-organic frameworks (MOFs) have gained a great deal of interest in the field of proton conduction in recent years, the low stability and poor proton conductivity (σ) of some MOFs have hindered their future applications. As a result, resolving the issues listed above must be prioritized. Due to their exceptional structural stability, MOFs with ferrocene groups that exhibit particular physical and chemical properties have drawn a lot of attention. This study describes the effective preparation of a set of three-dimensional ferrocene-based MOFs, MIL-53-FcDC-Al/Ga and CAU-43, containing both main group metals and 1,1'-ferrocene dicarboxylic acid (H2FcDC). Multiple measurements, including powder X-ray diffraction (PXRD), infrared (IR), and scanning electron microscopy (SEM), confirmed that the addition of ferrocene groups enhanced the thermal, water, and acid-base stabilities of the three MOFs. Consequently, their proton-conductive behaviors were meticulously measured utilizing the AC impedance approach, and their best proton conductivities are 5.20 × 10-3, 2.31 × 10-3, and 1.72 × 10-4 S/cm at 100 °C/98% relative humidity (RH), respectively. Excitingly, MIL-53-FcDC-Al/Ga demonstrated an extraordinarily ultrahigh σ of above 10-4 S·cm-1 under 30 °C/98% RH. Using data from structural analysis, PXRD, SEM, thermogravimetry (TG), and activation energy, their proton transport mechanisms were thoroughly examined. The fact that these MOFs are notably easy to assemble, inexpensive, toxin-free, and stable will increase the range of practical uses for them.

18.
J Org Chem ; 89(9): 6474-6488, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38607334

ABSTRACT

We report a step-economic strategy for the direct synthesis of spiro polycyclic N-heterocycles and indolecarbazole-fused naphthoquinones by merging oxidative coupling and cascade palladium-catalyzed intramolecular oxidative cyclization. In the protocol, bi-indolylnaphthoquinones were first synthesized by oxidative coupling of indoles and naphthoquinones. Subsequent cascade palladium-catalyzed intramolecular oxidative cyclization of bi-indolylnaphthoquinones gave spiro polycyclic N-heterocycles and indolecarbazoles. The intramolecular oxidative cyclization approach could also be realized by the presence or absence of iron catalysts under standard conditions. This protocol is featured with moderate to excellent yields, a wide substrate scope, and divergent structures of products.

19.
J Colloid Interface Sci ; 665: 554-563, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38552572

ABSTRACT

The achievement of covalent organic frameworks (COFs) with high stability and exceptional proton conductivity is of tremendous practical importance and challenge. Given this, we hope to prepare the highly stable COFs carrying CN connectors and enhance their proton conductivity via a post-modification approach. Herein, one COF, TpTta, was successfully synthesized by employing 1,3,5-triformylphloroglucinol (Tp) and 4,4',4″-(1,3,5-triazine-2,4,6-triyl)-trianiline (Tta) as starting materials, which has a ß-ketoenamine structure bearing a large amount of -NH groups and intramolecular H-bonds. TpTta was then post-modified by inserting imidazole (Im) and histamine (His) molecules, yielding the corresponding COFs, Im@TpTta and His@TpTta, respectively. As a result, their proton conductivities were surveyed under changeable temperatures (30-100 °C) and relative humidities (68-98 %), revealing a degree of temperature and humidity dependence. Impressively, under identical conditions, the optimum proton conductivities of the two post-modified COFs are 1.14 × 10-2 (Im@TpTta) and 3.45 × 10-3 S/cm (His@TpTta), which are significantly greater than that of the pristine COF, TpTta (2.57 × 10-5 S/cm). Finally, their proton conduction mechanisms were hypothesized based on the computed activation energy values, water vapor adsorption values, and structural properties of these COFs. Additionally, the excellent electrochemical stability of the produced COFs was expressed, as well as the prospective application value.

20.
Acta Pharm Sin B ; 14(3): 905-952, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38486980

ABSTRACT

Cancer immunotherapy, exemplified by the remarkable clinical benefits of the immune checkpoint blockade and chimeric antigen receptor T-cell therapy, is revolutionizing cancer therapy. They induce long-term tumor regression and overall survival benefit in many types of cancer. With the advances in our knowledge about the tumor immune microenvironment, remarkable progress has been made in the development of small-molecule drugs for immunotherapy. Small molecules targeting PRR-associated pathways, immune checkpoints, oncogenic signaling, metabolic pathways, cytokine/chemokine signaling, and immune-related kinases have been extensively investigated. Monotherapy of small-molecule immunotherapeutic drugs and their combinations with other antitumor modalities are under active clinical investigations to overcome immune tolerance and circumvent immune checkpoint inhibitor resistance. Here, we review the latest development of small-molecule agents for cancer immunotherapy by targeting defined pathways and highlighting their progress in recent clinical investigations.

SELECTION OF CITATIONS
SEARCH DETAIL