Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
FASEB J ; 36(1): e22130, 2022 01.
Article in English | MEDLINE | ID: mdl-34959259

ABSTRACT

This study aimed to investigate the causal relationship between chronic ingestion of a high-fat diet (HFD)-induced secretion of glucocorticoids (GCs) and the development of non-alcoholic fatty liver disease (NAFLD). We have produced a strain of transgenic mice (termed L/L mice) that have normal levels of circulating corticosterone (CORT), the major type of GCs in rodents, but unlike wild-type (WT) mice, their circulating CORT was not affected by HFD. Compared to WT mice, 12-week HFD-induced fatty liver was less pronounced with higher plasma levels of triglycerides in L/L mice. These changes were reversed by CORT supplement to L/L mice. By analyzing a sort of lipid metabolism-related proteins, we found that expressions of the hepatic cluster of differentiation 36 (CD36) were upregulated by HFD-induced CORT and involved in CORT-mediated fatty liver. Dexamethasone, an agonist of the glucocorticoid receptor (GR), upregulated expressions of CD36 in HepG2 hepatocytes and facilitated lipid accumulation in the cells. In conclusion, the fat ingestion-induced release of CORT contributes to NAFLD. This study highlights the pathogenic role of CORT-mediated upregulation of hepatic CD 36 in diet-induced NAFLD.


Subject(s)
Diet, High-Fat/adverse effects , Glucocorticoids/blood , Non-alcoholic Fatty Liver Disease/blood , Non-alcoholic Fatty Liver Disease/chemically induced , Triglycerides/blood , Animals , Glucocorticoids/genetics , Hep G2 Cells , Humans , Mice , Mice, Mutant Strains , Non-alcoholic Fatty Liver Disease/genetics , Triglycerides/genetics
2.
Chin J Physiol ; 64(4): 186-193, 2021.
Article in English | MEDLINE | ID: mdl-34472449

ABSTRACT

Adult hippocampal neurogenesis (AHN) is suppressed by chronic stress. The negative effect of stress is mainly attributed to increased levels of stress hormones (e.g. glucocorticoids, GCs). Exercise enhances AHN, yet it also stimulates GC secretion. To delineate the paradoxical role of GCs, we took the advantage of a unique mouse strain (L/L) which exhibits an inert response to stress-induced secretion of GCs to study the role of GCs in exercise-induced AHN. Our results showed that basal corticosterone (CORT), the main GCs in rodents, levels were similar between the L/L mice and wild-type (WT) mice. However, levels of CORT in the L/L mice were barely altered and significantly lower than those of the WT mice during treadmill running (TR). AHN was enhanced by 4 weeks of TR in the WT mice, but not L/L mice. WT mice that received daily injection of CORT to evoke serum CORT levels similar to those during exercise for 4 weeks did not affect AHN, whereas injection with large amount of CORT inhibited AHN. Taken together, our results indicated that exercise-related elevation of CORT participates in exercise-enhanced AHN. CORT alone is not sufficient to elicit AHN and may inhibit AHN if the levels are high.


Subject(s)
Corticosterone , Running , Animals , Glucocorticoids , Hippocampus , Mice , Neurogenesis
SELECTION OF CITATIONS
SEARCH DETAIL
...