Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Oncotarget ; 8(46): 80595-80611, 2017 Oct 06.
Article in English | MEDLINE | ID: mdl-29113328

ABSTRACT

Patients with diabetes are generally prone to pathogen infection and tumor progression. Here, we investigated the potential association between diabetes and Kaposi's sarcoma (KS), a tumor linked to infection with Kaposi's sarcoma-associated herpesvirus (KSHV). By using Taiwan's National Health Insurance Research Database, we found that diabetes is statistically associated with increased risk of KS in a case-control study. Since a high level of blood sugar is the hallmark of diabetes, we determined whether high glucose promotes both KSHV reactivation and infection, which are crucial for KS pathogenesis. Our results showed that high glucose significantly increases lytic reactivation of KSHV but not Epstein-Barr virus, another related human oncogenic gammaherpesvirus, in latently infected cells. Activation of the transcription factor AP1 by high glucose is critically required for the onset of KSHV lytic reactivation. We also demonstrated that high glucose enhances susceptibility of various target cells to KSHV infection. Particularly, in endothelial and epithelial cells, levels of specific cellular receptors for KSHV entry, including integrin α3ß1 and xCT/CD98, are elevated under high glucose conditions, which correlate with the enhanced cell susceptibility to infection. Taken together, our studies implicate that the high-glucose microenvironment may be an important predisposing factor for KS development.

2.
J Virol ; 91(19)2017 10 01.
Article in English | MEDLINE | ID: mdl-28701396

ABSTRACT

The switch of Kaposi's sarcoma-associated herpesvirus (KSHV) from latency to lytic replication is a key event for viral dissemination and pathogenesis. MLN4924, a novel neddylation inhibitor, reportedly causes the onset of KSHV reactivation but impairs later phases of the viral lytic program in infected cells. Thus far, the molecular mechanism involved in the modulation of the KSHV lytic cycle by MLN4924 is not yet fully understood. Here, we confirmed that treatment of different KSHV-infected primary effusion lymphoma (PEL) cell lines with MLN4924 substantially induces viral lytic protein expression. Due to the key role of the virally encoded ORF50 protein in the latent-to-lytic switch, we investigated its transcriptional regulation by MLN4924. We found that MLN4924 activates the ORF50 promoter (ORF50p) in KSHV-positive cells (but not in KSHV-negative cells), and the RBP-Jκ-binding elements within the promoter are critically required for MLN4924 responsiveness. In KSHV-negative cells, reactivation of the ORF50 promoter by MLN4924 requires the presence of the latency-associated nuclear antigen (LANA). Under such a condition, LANA acts as a repressor to block the ORF50p activity, whereas MLN4924 treatment relieves LANA-mediated repression. Importantly, we showed that LANA is a neddylated protein and can be deneddylated by MLN4924. On the other hand, we revealed that MLN4924 exhibits concentration-dependent biphasic effects on 12-O-tetradecanoylphorbol-13-acetate (TPA)- or sodium butyrate (SB)-induced viral reactivation in PEL cell lines. In other words, low concentrations of MLN4924 promote activation of TPA- or SB-mediated viral reactivation, whereas high concentrations of MLN4924, conversely, inhibit the progression of TPA- or SB-mediated viral lytic program.IMPORTANCE MLN4924 is a neddylation (NEDD8 modification) inhibitor, which currently acts as an anti-cancer drug in clinical trials. Although MLN4924 has been reported to trigger KSHV reactivation, many aspects regarding the action of MLN4924 in regulating the KSHV lytic cycle are not fully understood. Since the KSHV ORF50 protein is the key regulator of viral lytic reactivation, we focus on its transcriptional regulation by MLN4924. We here show that activation of the ORF50 gene by MLN4924 involves the relief of LANA-mediated transcriptional repression. Importantly, we find that LANA is a neddylated protein. To our knowledge, this is the first report showing that neddylation occurs in viral proteins. Additionally, we provide evidence that different concentrations of MLN4924 have opposite effects on TPA-mediated or SB-mediated KSHV lytic cycle activation. Therefore, in clinical application, we propose that MLN4924 needs to be used with caution in combination therapy to treat KSHV-positive subjects.


Subject(s)
Cyclopentanes/pharmacology , Herpesvirus 8, Human/pathogenicity , Immediate-Early Proteins/genetics , Pyrimidines/pharmacology , Sarcoma, Kaposi/pathology , Trans-Activators/genetics , Ubiquitin-Activating Enzymes/antagonists & inhibitors , Virus Activation/drug effects , Antigens, Viral/metabolism , Butyric Acid/pharmacology , Cell Line, Tumor , Cell Proliferation , HEK293 Cells , Humans , Immunoglobulin J Recombination Signal Sequence-Binding Protein/genetics , Immunoglobulin J Recombination Signal Sequence-Binding Protein/metabolism , Nuclear Proteins/metabolism , Promoter Regions, Genetic/drug effects , Sarcoma, Kaposi/virology , Tetradecanoylphorbol Acetate/pharmacology
3.
PLoS Pathog ; 12(10): e1005918, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27698494

ABSTRACT

The switch between latency and the lytic cycle of Kaposi's sarcoma-associated herpesvirus (KSHV) is controlled by the expression of virally encoded ORF50 protein. Thus far, the regulatory mechanism underlying the protein stability of ORF50 is unknown. Our earlier studies have demonstrated that a protein abundance regulatory signal (PARS) at the ORF50 C-terminal region modulates its protein abundance. The PARS region consists of PARS-I (aa 490-535) and PARS-II (aa 590-650), and mutations in either component result in abundant expression of ORF50. Here, we show that ORF50 protein is polyubiquitinated and its abundance is controlled through the proteasomal degradation pathway. The PARS-I motif mainly functions as a nuclear localization signal in the control of ORF50 abundance, whereas the PARS-II motif is required for the binding of ubiquitin enzymes in the nucleus. We find that human oncoprotein MDM2, an ubiquitin E3 ligase, is capable of interacting with ORF50 and promoting ORF50 degradation in cells. The interaction domains between both proteins are mapped to the PARS region of ORF50 and the N-terminal 220-aa region of MDM2. Additionally, we identify lysine residues at positions 152 and 154 in the N-terminal domain of ORF50 critically involved in MDM2-mediated downregulation of ORF50 levels. Within KSHV-infected cells, the levels of MDM2 were greatly reduced during viral lytic cycle and genetic knockdown of MDM2 in these cells favored the enhancement of ORF50 expression, supporting that MDM2 is a negative regulator of ORF50 expression. Collectively, the study elucidates the regulatory mechanism of ORF50 stability and implicates that MDM2 may have a significant role in the maintenance of viral latency by lowering basal level of ORF50.


Subject(s)
Gene Expression Regulation, Viral/physiology , Herpesviridae Infections/metabolism , Immediate-Early Proteins/biosynthesis , Proto-Oncogene Proteins c-mdm2/metabolism , Trans-Activators/biosynthesis , Virus Latency/physiology , Cell Line , Fluorescent Antibody Technique , Herpesvirus 8, Human , Humans , Immunoblotting , Immunoprecipitation , Microscopy, Confocal , Protein Stability
4.
J Virol ; 88(17): 10092-109, 2014 Sep 01.
Article in English | MEDLINE | ID: mdl-24965448

ABSTRACT

UNLABELLED: The orf47-orf46-orf45 gene cluster of Kaposi's sarcoma-associated herpesvirus (KSHV) is known to serially encode glycoprotein L (gL), uracil DNA glycosylase, and a viral tegument protein. Here, we identify two novel mRNA variants, orf47/45-A and orf47/45-B, alternatively spliced from a tricistronic orf47-orf46-orf45 mRNA that is expressed in the orf47-orf46-orf45 gene locus during the early stages of viral reactivation. The spliced gene products, ORF47/45-A and ORF47/45-B, consist of only a partial region of gL (ORF47), a unique 7-amino-acid motif, and the complete tegument protein ORF45. Like the ORF45 protein, ORF47/45-A and ORF47/45-B expressed in cells sufficiently activate the phosphorylation of p90 ribosomal S6 kinase (RSK) and extracellular signal-regulated protein kinase (ERK). However, unlike ORF45, both ORF47/45-A and ORF47/45-B contain a signal peptide sequence and are localized at the endoplasmic reticulum (ER). Additionally, we found that ORF47/45-A and ORF47/45-B have an extra function that mediates the upregulation of GRP78, a master regulator of ER homeostasis. The important event regarding GRP78 upregulation can be observed in all tested KSHV-positive cell lines after viral reactivation, and knockdown of GRP78 in cells significantly impairs viral lytic cycle progression, especially at late lytic stages. Compared with some other viral glycoproteins synthesized through the ER, our results strongly implicate that the ORF47/45 proteins may serve as key effectors for controlling GRP78 expression and ER homeostasis in cells. Taken together, our findings provide evidence showing the reciprocal association between the modulation of ER homeostasis and the progression of the KSHV lytic cycle. IMPORTANCE: Emerging evidence has shown that several viruses appear to use different strategies to control ER homeostasis for supporting their productive infections. The two parts of this study identify two aspects of the association between the regulation of ER homeostasis and the progression of the KSHV lytic cycle. The first part characterizes the function of two early lytic cycle proteins, ORF47/45-A and ORF47/45-B, on the activation of a major ER chaperone protein, GRP78. In addition to the ability to promote GRP78 upregulation, the ORF47/45 proteins also activate the phosphorylation of RSK and ERK. The second part reveals that upregulation of GRP78 is essential for the progression of the KSHV lytic cycle, especially at late stages. We therefore propose that activation of GRP78 expression by viral proteins at the early lytic stage may aid with the protection of host cells from severe ER stress and may directly involve the assembly or release of virions.


Subject(s)
DNA, Recombinant , Genes, Viral , Herpesvirus 8, Human/genetics , Immediate-Early Proteins/genetics , Multigene Family , DNA, Viral/chemistry , DNA, Viral/genetics , Endoplasmic Reticulum Chaperone BiP , Gene Expression Regulation, Viral , Herpesvirus 8, Human/physiology , Humans , Molecular Sequence Data , RNA, Messenger/genetics , RNA, Viral/genetics , Sequence Analysis, DNA , Virus Replication
5.
Virology ; 442(1): 38-50, 2013 Jul 20.
Article in English | MEDLINE | ID: mdl-23601787

ABSTRACT

The ORF45 gene of Kaposi's sarcoma-associated herpesvirus (KSHV) encodes a multifunctional tegument protein. Here, we characterize the transcriptional control of the ORF45 gene and show that its promoter can be activated by ORF50 protein, a latent-lytic switch transactivator. The ORF45 promoter can also be induced by sodium butyrate (SB), a histone deacetylase inhibitor, in the absence of ORF50 protein. Although SB induces the ORF45 gene independently of ORF50, its full activation may require the presence of ORF50. Deletion and point mutation analyses revealed that two RBP-Jκ-binding sites in the ORF45 promoter confer the ORF50 responsiveness, whereas NF-Y and Sp1-binding sites mediate the response to SB. Direct binding of NF-Y, Sp1, or RBP-Jκ protein to the ORF45 promoter is required for the promoter activation induced by SB or by ORF50. In conclusion, our study demonstrates both ORF50-dependent and ORF50-independent transcriptional mechanisms operated on the activation of the ORF45 gene.


Subject(s)
Gene Expression Regulation, Viral , Herpesvirus 8, Human/physiology , Immediate-Early Proteins/metabolism , Trans-Activators/metabolism , Virus Activation , Binding Sites , Butyrates/metabolism , Butyrates/pharmacology , CCAAT-Binding Factor , Herpesvirus 8, Human/genetics , Herpesvirus 8, Human/metabolism , Humans , Immediate-Early Proteins/genetics , Immunoglobulin J Recombination Signal Sequence-Binding Protein/genetics , Immunoglobulin J Recombination Signal Sequence-Binding Protein/metabolism , Protein Kinases , Trans-Activators/genetics , Viral Proteins/genetics , Viral Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...