Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
J Phys Condens Matter ; 30(24): 245402, 2018 Jun 20.
Article in English | MEDLINE | ID: mdl-29714173

ABSTRACT

Extended x-ray absorption fine structure (EXAFS) at the Cd K edge and diffraction patterns have been measured on CdTe as a function of pressure from 100 kPa (1 bar) to 5 GPa using a cell with nano-polycrystalline diamond anvils and an x-ray focussing scanning spectrometer. Three phases-zincblende (ZB), mixed cinnabar-ZB and rocksalt (RS)-are well distinguished in different pressure intervals. The bond compressibility measured by EXAFS in the ZB phase is slightly smaller than the one measured by diffraction and decreases significantly faster when the pressure increases; the difference is attributed to the effect of relative vibrations perpendicular to the Cd-Te bond. The parallel mean square relative displacement (MSRD) decreases, the perpendicular MSRD increases when the pressure increases, leading to an increasing anisotropy of relative atomic vibrations. A constant-temperature bond Grüneisen parameter (GP) has been evaluated for the ZB phase and compared with the constant-pressure bond GP measured in a previous experiment; an attempt is made to connect the bond GPs measured by EXAFS and the more familiar thermodynamic GP and mode GPs; the comparisons suggest the inadequacy of the quasi-harmonic approximation to deal with the local vibrational properties sampled by EXAFS.

2.
Phys Chem Chem Phys ; 19(27): 17526-17530, 2017 Jul 21.
Article in English | MEDLINE | ID: mdl-28657083

ABSTRACT

Cerium phosphide undergoes a unit-cell volume discontinuity without any structural phase transitions upon application of a high pressure of ∼10 GPa. This phenomenon is attributed to a change in the electronic charge distribution of the cerium in CeP, but to date no direct experimental verification for this hypothesis has been presented. Here, we report a Ce L3-edge X-ray absorption spectroscopy study under pressure, which provides direct compelling evidence of an electronic transition associated with the above-mentioned isostructural volume discontinuity. The present results should be relevant to the understanding of the phenomenon of pressure induced isostructural transitions involving unit-cell volume collapse.

3.
Nat Commun ; 7: 13753, 2016 12 07.
Article in English | MEDLINE | ID: mdl-27924866

ABSTRACT

Transparent ceramics are important for scientific and industrial applications because of the superior optical and mechanical properties. It has been suggested that optical transparency and mechanical strength are substantially enhanced if transparent ceramics with nano-crystals are available. However, synthesis of the highly transparent nano-crystalline ceramics has been difficult using conventional sintering techniques at relatively low pressures. Here we show direct conversion from bulk glass starting material in mutianvil high-pressure apparatus leads to pore-free nano-polycrystalline silicate garnet at pressures above ∼10 GPa in a limited temperature range around 1,400 °C. The synthesized nano-polycrystalline garnet is optically as transparent as the single crystal for almost the entire visible light range and harder than the single crystal by ∼30%. The ultrahigh-pressure conversion technique should provide novel functional ceramics having various crystal structures, including those of high-pressure phases, as well as ideal specimens for some mineral physics applications.

4.
J Chem Phys ; 142(21): 214503, 2015 Jun 07.
Article in English | MEDLINE | ID: mdl-26049504

ABSTRACT

We have investigated the local and electronic structure of solid rubidium by means of x-ray absorption spectroscopy up to 101.0 GPa, thus doubling the maximum investigated experimental pressure. This study confirms the predicted stability of phase VI and was completed by the combination of two pivotal instrumental solutions. On one side, we made use of nanocrystalline diamond anvils, which, contrary to the more commonly used single crystal diamond anvils, do not generate sharp Bragg peaks (glitches) at specific energies that spoil the weak fine structure oscillations in the x-ray absorption cross section. Second, we exploited the performance of a state-of-the-art x-ray focussing device yielding a beam spot size of 5 × 5 µm(2), spatially stable over the entire energy scan. An advanced data analysis protocol was implemented to extract the pressure dependence of the structural parameters in phase VI of solid Rb from 51.2 GPa up to the highest pressure. A continuous reduction of the nearest neighbour distances was observed, reaching about 6% over the probed pressure range. We also discuss a phenomenological model based on the Einstein approximation to describe the pressure behaviour of the mean-square relative displacement. Within this simplified scheme, we estimate the Grüneisen parameter for this high pressure Rb phase to be in the 1.3-1.5 interval.

5.
Science ; 281(5373): 85-7, 1998 Jul 03.
Article in English | MEDLINE | ID: mdl-9651250

ABSTRACT

In experiments at 13.5 gigapascals and 1030 degreesC, the growth rate of wadsleyite, which forms from transformation of olivine, was substantially enhanced by the presence of water. Wadsleyite had a low dislocation density and subgrain boundaries in wet runs. Water enhanced the dislocation recovery in wadsleyite and therefore caused inelastic relaxation of the localized pressure drop associated with the transformation, resulting in an increase of the growth rate in wet runs. These results imply that even a small amount of water of 0. 05 weight percent can weaken wadsleyite in the mantle.

SELECTION OF CITATIONS
SEARCH DETAIL