Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 122
Filter
Add more filters










Publication year range
1.
JACS Au ; 4(4): 1615-1622, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38665645

ABSTRACT

Have you ever imagined reactions of alkenes with hydrogen that result in anything other than hydrogenation or hydrogenative C-C coupling? We have long sought to develop not only hydrogenation catalysts that activate H2 as hydride ions but also electron transfer catalysts that activate H2 as a direct electron donor. Here, we report the reductive cyclopropanation of alkenes using an iridium electron storage catalyst with H2 as the electron source without releasing metal waste from the reductant. We discuss the catalytic mechanism with selectivity to give the trans-isomer. These findings are based on the isolation of three complexes and density functional theory calculations.

2.
J Am Chem Soc ; 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38604977

ABSTRACT

Polar compounds with switchable polarization properties are applicable in various devices such as ferroelectric memory and pyroelectric sensors. However, a strategy to prepare polar compounds has not been established. We report a rational synthesis of a polar CoGa crystal using chiral cth ligands (SS-cth and RR-cth, cth = 5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane). Both the original homo metal Co crystal and Ga crystal exhibit a centrosymmetric isostructure, where the dipole moment of metal complexes with the SS-cth ligand and those with the RR-cth ligand are canceled out. To obtain a polar compound, the Co valence tautomeric complex with SS-cth in the homo metal Co crystal is replaced with the Ga complex with SS-cth by mixing Co valence tautomeric complexes with RR-cth and Ga complexes with SS-cth. The CoGa crystal exhibits polarization switching between the pseudononpolar state at a low temperature and the polar state at a high temperature because only Co complexes exhibit changes in electric dipole moment due to metal-to-ligand charge transfer. Following the same strategy, the polarization-switchable CoZn complex was synthesized. The CoZn crystal exhibits polarization switching between the polar state at a low temperature and the pseudononpolar state at a high temperature, which is the opposite temperature dependence to that of the CoGa crystal. These results revealed that the polar crystal can be synthesized by design, using a chiral ligand. Moreover, our method allows for the control of temperature-dependent polarization changes, which contrasts with typical ferroelectric compounds, in which the polar ferroelectric phase typically occurs at low temperatures.

3.
Chemistry ; 30(24): e202400098, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38376431

ABSTRACT

4,4'-Biazulene is a potentially attractive key component of an axially chiral biaryl compound, however, its structure and properties have not been clarified owing to the lack of its efficient synthesis. We report a breakthrough in the reliable synthesis of 4,4'-biazulene, which is achieved by the access to azulen-4-ylboronic acid pinacol ester and 4-iodoazulene as novel key synthetic intermediates for the Suzuki-Miyaura cross-coupling reaction. The X-ray crystallographic analysis of 4,4'-biazulene confirmed its axial chirality. The enantiomers of 4,4'-biazulene were successfully resolved by HPLC on the chiral stationary phase column. The kinetic experiments and DFT calculations indicate that the racemization energy barrier of 4,4'-biazulene is comparable to that of 1,1'-binaphthyl.

4.
Dalton Trans ; 53(4): 1607-1615, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38165665

ABSTRACT

The catalytic activity of a rhodium(II) dimer complex, [RhII(TMAA)]2 (TMAA = tetramethyltetraaza[14]annulene), in C-H amination reactions with organic azides is explored. Organic azides (N3-R) with an electron-withdrawing group such as a sulfonyl group (trisylazide; R = S(O)2iPr3C6H2 (Trs)) and a simple alkyl group (R = (CH2)4Ph, (CH2)2OCH2Ph, CH2Ph, or C6H4NO2) are employed in intra- and intermolecular C-H bond amination reactions. The spectroscopic analysis using ESI-mass and EPR spectroscopy techniques on the reaction intermediate generated from [RhII(TMAA)]2 and N3-R reveals that a rhodium(III)-nitrenoid species is an active oxidant in the C-H bond amination reaction. DFT calculations suggest that the species can feature a radical localised nitrogen atom. The DFT calculation studies also indicate that the amination reaction involves hydrogen atom abstraction from the organic substrate R'-H by the NR moiety of 2N˙R and successive rebound of the generated organic radical intermediate R'˙ to [RhIII(NH-R)(TMAA)], giving [RhII(TMAA)] and R'-NH-R (amination product).

5.
JACS Au ; 3(10): 2813-2825, 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37885582

ABSTRACT

We have synthesized and characterized a RuII-OH2 complex (2), which has a pentadentate ligand with two pivalamide groups as bulky hydrogen-bonding (HB) moieties in the second coordination sphere (SCS). Complex 2 exhibits a coordination equilibrium through the coordination of one of the pivalamide oxygens to the Ru center in water, affording a η6-coordinated complex, 3. A detailed thermodynamic analysis of the coordination equilibrium revealed that the formation of 3 from 2 is entropy-driven owing to the dissociation of the axial aqua ligand in 2. Complex 2 was oxidized by a CeIV salt to produce the corresponding RuIII(OH) complex (5), which was characterized crystallographically. In the crystal structure of 5, hydrogen bonds are formed among the NH groups of the pivalamide moieties and the oxygen atom of the hydroxo ligand. Further 1e--oxidation of 5 yields the corresponding RuIV(O) complex, 6, which has intramolecular HB of the oxo ligand with two amide N-H protons. Additionally, the RuIII(OH) complex, 5, exhibits disproportionation to the corresponding RuIV(O) complex, 6, and a mixture of the RuII complexes, 2 and 3, in an acidic aqueous solution. We investigated the oxidation of a phenol derivative using complex 6 as the active species and clarified the switch of the reaction mechanism from hydrogen-atom transfer at pH 2.5 to electron transfer, followed by proton transfer at pH 1.0. Additionally, the intramolecular HB in 6 exerts enhancing effects on oxygen-atom transfer reactions from 6 to alkenes such as cyclohexene and its water-soluble derivative to afford the corresponding epoxides, relative to the corresponding RuIV(O) complex (6') lacking the HB moieties in the SCS.

6.
Inorg Chem ; 62(34): 13765-13774, 2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37590095

ABSTRACT

The literature contains numerous reports of copper complexes for nitrite (NO2-) reduction. However, details of how protons and electrons arrive and how nitric oxide (NO) is released remain unknown. The influence of the coordination mode of nitrite on reactivity is also under debate. Kundu and co-workers have reported nitrite reduction by a copper(II) complex [J. Am. Chem. Soc. 2020, 142, 1726-1730]. In their report, the copper(II) complex reduced nitrite using a phenol derivative as a reductant, resulting in NO, a hydroxyl copper(II) complex, and the corresponding biphenol. Also, the involvement of proton-coupled electron transfer was proposed by mechanistic studies. Herein, density functional theory calculations were performed to determine a mechanism for reduction of nitrite by a copper(II) complex. As a result of geometry optimization of an initial complex, two possible structures were obtained: Cu-ONO and Cu-NO2. Two possible reaction pathways initiated from Cu-ONO or Cu-NO2 were then considered. The calculation results indicated that the Cu-ONO pathway is energetically favorable. When changes in the electronic structure were considered, both pathways were found to involve concerted proton-electron transfer (CPET). In addition, an intrinsic reaction coordinate analysis revealed that the two pathways were achieved by different types of CPET. Furthermore, an intrinsic bond orbital analysis clearly indicated that, in the Cu-ONO pathway, the chemical events involved proceeded concertedly yet asynchronously.

7.
Inorg Chem ; 62(30): 11785-11795, 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37307067

ABSTRACT

Co(II)-pyrocobester (P-Co(II)), a dehydrocorrin complex, was semisynthesized from vitamin B12 (cyanocobalamin), and its photochemical and electrochemical properties were investigated and compared to those of the cobester (C-Co(II)), the cobalt-corrin complex. The UV-vis absorptions of P-Co(II) in CH2Cl2, ascribed to the π-π* transition, were red-shifted compared to those of C-Co(II) due to the π-expansion of the macrocycle in the pyrocobester. The reversible redox couple of P-Co(II) was observed at E1/2 = -0.30 V vs Ag/AgCl in CH3CN, which was assigned to the Co(II)/Co(I) redox couple by UV-vis, ESR, and molecular orbital analysis. This redox couple was positively shifted by 0.28 V compared to that of C-Co(II). This is caused by the high electronegativity of the dehydrocorrin macrocycle, which was estimated by DFT calculations for the free-base ligands. The reactivity of the Co(I)-pyrocobester (P-Co(I)) was evaluated by the reaction with methyl iodide in CV and UV-vis to form a photosensitive Co(III)-CH3 complex (P-Co(III)-CH3). The properties of the excited state of P-Co(I), *Co(I), were also investigated by femtosecond transient absorption (TA) spectroscopy. The lifetime of *Co(I) was estimated to be 29 ps from the kinetic trace at 587 nm. The lifetime of *Co(I) became shorter in the presence of Ar-X, such as iodobenzonitrile (1a), bromobenzonitrile (1b), and chlorobenzonitrile (1c), and the rate constants of electron transfer (ET) between the *Co(I) and Ar-X were determined to be 2.9 × 1011 M-1 s-1, 4.9 × 1010 M-1 s-1, and 1.0 × 1010 M-1 s-1 for 1a, 1b, and 1c, respectively.

8.
Chem Sci ; 14(22): 5974-5982, 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37293653

ABSTRACT

We have demonstrated site-selective radical reactions of the kinetically stable open-shell singlet diradicaloids difluoreno[3,4-b:4',3'-d]thiophene (DFTh) and difluoreno[3,4-b:4',3'-d]furan (DFFu) with tributyltin hydride (HSn(n-Bu)3) and azo-based radical initiators. Treatment of these diradicaloids with HSn(n-Bu)3 induces hydrogenation at the ipso-carbon in the five-membered rings, while treatment with 2,2'-azobis(isobutyronitrile) (AIBN) induces substitution at the carbon atoms in the peripheral six-membered rings. We have also developed one-pot substitution/hydrogenation reactions of DFTh/DFFu with various azo-based radical initiators and HSn(n-Bu)3. The resulting products can be converted into substituted DFTh/DFFu derivatives via dehydrogenation. Theoretical calculations unveiled a detailed mechanism of the radical reactions of DFTh/DFFu with HSn(n-Bu)3 and with AIBN, and that the site-selectivity of these radical reactions is controlled by the balance of the spin density and the steric hindrance in DFTh/DFFu.

9.
Chemistry ; 29(39): e202300988, 2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37186127

ABSTRACT

Herein, we describe Hiyama coupling via intramolecular substituent transfer from silicon on one blade of triptycenes to another to yield 1,8,13-trisubstituted chiral triptycenes. This reaction is attributed to the proximity effect of substituents on triptycene, which plays an important role in not only the formation of the oxy-palladacycle but also the activation of the silyl group to facilitate σ-bond metathesis. After bromination and nucleophilic ring opening, the second intramolecular Hiyama coupling provided various 1,8,13-trisubstituted chiral triptycenes. The optical resolution of 1,8,13-triptycene afforded an optically active form for the first time.

10.
Nature ; 616(7957): 476-481, 2023 04.
Article in English | MEDLINE | ID: mdl-37020016

ABSTRACT

Using natural gas as chemical feedstock requires efficient oxidation of the constituent alkanes-and primarily methane1,2. The current industrial process uses steam reforming at high temperatures and pressures3,4 to generate a gas mixture that is then further converted into products such as methanol. Molecular Pt catalysts5-7 have also been used to convert methane to methanol8, but their selectivity is generally low owing to overoxidation-the initial oxidation products tend to be easier to oxidize than methane itself. Here we show that N-heterocyclic carbene-ligated FeII complexes with a hydrophobic cavity capture hydrophobic methane substrate from an aqueous solution and, after oxidation by the Fe centre, release a hydrophilic methanol product back into the solution. We find that increasing the size of the hydrophobic cavities enhances this effect, giving a turnover number of 5.0 × 102 and a methanol selectivity of 83% during a 3-h methane oxidation reaction. If the transport limitations arising from the processing of methane in an aqueous medium can be overcome, this catch-and-release strategy provides an efficient and selective approach to using naturally abundant alkane resources.

11.
J Am Chem Soc ; 145(8): 4384-4388, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36798970

ABSTRACT

Hydrogen peroxide is an environmentally friendly oxidizing agent but current synthetic methods are wasteful. This is a result of the high flammability of H2/O2 mixtures and/or the requirement for cocatalysts. In this paper, we report the synthesis of H2O2 by means of a homogeneous catalyst, which allows a safe, one-pot synthesis in water, using only H2 and O2. This catalyst is capable of removing electrons from H2, storing them for the reduction of O2, and then permitting the protonation of the reduced oxygen to H2O2. The turnover number (TON) is 910 under an H2/O2 (95/5) atmosphere (1.9 MPa) for 12 h at 23 °C, which is the highest of any homogeneous catalyst. Furthermore, we propose a reaction mechanism based on two crystal structures.

12.
Molecules ; 27(21)2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36364093

ABSTRACT

The factors that affect acceleration and high trans/cis selectivity in the catalytic cyclopropanation reaction of styrene with ethyl diazoacetate by cobalt N-confused porphyrin (NCP) complexes were investigated using density functional theory calculations. The reaction rate was primarily related to the energy gap between the cobalt-carbene adduct intermediates, A and B, which was affected by the NCP skeletons and axial pyridine ligands more than the corresponding porphyrin complex. In addition, high trans/cis stereoselectivity was determined at the TS1 and, in part, in the isomerization process at the carbon-centered radical intermediates, Ctrans and Ccis.


Subject(s)
Porphyrins , Ligands , Cobalt , Carbon , Alkenes
13.
Angew Chem Int Ed Engl ; 61(48): e202212726, 2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36207769

ABSTRACT

Antiaromatic compounds have recently received considerable attention because of their novel properties such as narrow HOMO-LUMO gaps and facile formation of mutual stacking. Here, the spontaneous assembly of antiaromatic meso-2-thienyl-substituted 5,15-dioxaporphyrin (DOP-1) is scrutinized at the liquid-solid interface by scanning tunneling microscopy (STM). Polymorphism in monolayers characterized by the orthogonal and parallel assemblies is found at the low concentration of 0.05 mM. The parallel assembly is more stable and dominantly formed at higher concentrations. Aggregation was observed at concentrations >0.2 mM, and the STM images of the aggregates implied the formation of stacked layers. The intrinsic electronic structures of the mutually stacked bilayer generated by applying an electric pulse to the monolayer were probed by scanning tunneling spectroscopy to reveal the narrowing of the HOMO-LUMO gap by about 20 % compared with the monolayer, thus suggesting significant molecular orbital interactions.

14.
Chem Commun (Camb) ; 58(66): 9218-9221, 2022 Aug 16.
Article in English | MEDLINE | ID: mdl-35899606

ABSTRACT

A series of Ir complexes has been developed as multifunctional photocatalysts for CO2 reduction to give HCO2H selectively. The catalytic activities and photophysical properties vary widely across the series, and the bulky group insertion resulted in the formation of HCO2H and CO with the catalyst turnover number of >10 400.

15.
Inorg Chem ; 61(25): 9710-9724, 2022 Jun 27.
Article in English | MEDLINE | ID: mdl-35696150

ABSTRACT

The oxidation of alkanes with m-chloroperbenzoic acid (mCPBA) catalyzed by the B12 derivative, heptamethyl cobyrinate, was investigated under several conditions. During the oxidation of cyclohexane, heptamethyl cobyrinate works as a catalyst to form cyclohexanol and cyclohexanone at a 0.67 alcohol to ketone ratio under aerobic conditions in 1 h. The reaction rate shows a first-order dependence on the [catalyst] and [mCPBA] while being independent of [cyclohexane]; Vobs = k2[catalyst][mCPBA]. The kinetic deuterium isotope effect was determined to be 1.86, suggesting that substrate hydrogen atom abstraction is not dominantly involved in the rate-determining step. By the reaction of mCPBA and heptamethyl cobyrinate at low temperature, the corresponding cobalt(III)acylperoxido complex was formed which was identified by UV-vis, IR, ESR, and ESI-MS studies. A theoretical study suggested the homolysis of the O-O bond in the acylperoxido complex to form Co(III)-oxyl (Co-O•) and the m-chlorobenzoyloxyl radical. Radical trapping experiments using N-tert-butyl-α-phenylnitrone and CCl3Br, product analysis of various alkane oxidations, and computer analysis of the free energy for radical abstraction from cyclohexane by Co(III)-oxyl suggested that both Co(III)-oxyl and the m-chlorobenzoyloxyl radical could act as hydrogen-atom transfer reactants for the cyclohexane oxidation.


Subject(s)
Alkanes , Hydrogen , Catalysis , Chlorobenzoates , Cyclohexanes/chemistry
16.
RSC Adv ; 12(20): 12253-12257, 2022 Apr 22.
Article in English | MEDLINE | ID: mdl-35496339

ABSTRACT

CH4 conversion is one of the most challenging chemical reactions due to its inertness in terms of physical and chemical properties. We have achieved photo-induced C-H bond breaking of CH4 and successive C-O bond formation to form CH3OH concomitant with HCHO by an organometallic Ru complex with O2.

17.
Dalton Trans ; 51(14): 5399-5403, 2022 Apr 05.
Article in English | MEDLINE | ID: mdl-35316312

ABSTRACT

A density functional theory study was carried out to investigate the reduction mechanisms of NO to N2O using a dicopper complex reported by Zhang and coworkers (J. Am. Chem. Soc., 2019, 141, 10159-10164). The reaction mechanism consists of three steps: N-N bond formation, isomerization of the resultant N2O2 moiety, and cleavage of the N-O bond.


Subject(s)
Nitric Oxide , Nitrous Oxide , Nitric Oxide/chemistry , Nitrous Oxide/chemistry , Oxidation-Reduction
18.
Inorg Chem ; 61(1): 10-14, 2022 Jan 10.
Article in English | MEDLINE | ID: mdl-34890508

ABSTRACT

Benzene hydroxylation catalyzed by ruthenium-substituted Keggin-type polyoxometalates [RuV(O)XW11O39]n- (RuVOX; X = Al, Ga, Si, Ge, P, As, S; heteroatoms; 3 ≤ n ≤ 6) is investigated using the density functional theory approach. As a possible side reaction, the water oxidation reaction is also considered. We found that the rate-determining step for water oxidation by RuVOX requires a higher activation free energy than the benzene hydroxylation reaction, suggesting that all of the RuVOX catalysts show high chemoselectivity toward benzene hydroxylation. Additionally, the heteroatom effect in benzene hydroxylation by RuVOX is discussed. The replacement of Si by X induces changes in the bond length of µ4O-X, resulting in a change in the activation free energy for benzene hydroxylation by RuVOX. Consequentially, RuVOS is expected to be the most effective catalyst among the (RuVOX) catalysts for the benzene hydroxylation reaction.

19.
Dalton Trans ; 51(3): 1123-1130, 2022 Jan 17.
Article in English | MEDLINE | ID: mdl-34951431

ABSTRACT

The reaction of osmium tetroxide (OsO4) and carboxylate anions (acetate: X- = AcO- and benzoate: X- = BzO-) gave 1 : 1 adducts, [OsO4(X)]- (1X), the structures of which were determined by X-ray crystallographic analysis. In both cases, the carboxylate anion X coordinates to the osmium centre to generate a distorted trigonal bipyramidal osmium(VIII) complex. The carboxylate adducts show a negative shift of the redox potentials (E1/2) and a red shift of the νOsO stretches as compared to those of tetrahedral OsO4 itself. Despite the negative shift of E1/2, the reactivity of these adduct complexes 1X was enhanced compared to that of OsO4 in benzylic C(sp3)-H bond oxidation. The reaction obeyed the first-order kinetics on both 1X and the substrates, giving the second-order rate constant (k2), which exhibits a linear correlation with the C-H bond dissociation energy (BDEC-H) of the substrates (xanthene, 9,10-dihydroanthracene, fluorene and 1,2,3,4-tetrahydronaphthalene) and a kinetic deuterium isotope effect (KIE) of 9.7 (k2(xanthene-h2)/k2(xanthene-d2)). On the basis of these kinetic data together with the DFT calculation results, we propose a stepwise reaction mechanism involving rate-limiting benzylic hydrogen atom abstraction and subsequent rebound of the generated organic radical intermediate to a remaining oxido group on the osmium centre.

20.
Chem Asian J ; 17(4): e202101341, 2022 Feb 14.
Article in English | MEDLINE | ID: mdl-34939334

ABSTRACT

During the self-assembly of π-conjugated molecules, linkers and substituents can potentially add supportive noncovalent intermolecular interactions to π-stacking interactions. Here, we report the self-assembly behavior of thienopyrrole-fused thiadiazole (TPT) fluorescent dyes that possess ester or ether linkers and dodecyloxy side chains in solution and the condensed phase. A comparison of the self-association behavior of the ester- and ether-bridged compounds in solution using detailed UV-vis, fluorescence, and NMR spectroscopic studies revealed that the subtle replacement of the ether linkers by ester linkers leads to a distinct increase in the association constant (ca. 3-4 fold) and the enthalpic contribution (ca. 3 kcal mol-1 ). Theoretical calculations suggest that the ester linkers, which are in close proximity to one another due to the π-stacking interactions, induce attractive electrostatic forces and augment self-association. The self-assembly of TPT dyes into well-defined 1D clusters with high aspect ratios was observed, and their morphologies and crystallinity were investigated using SEM and X-ray diffraction analyses. TPTs with ester linkers exhibit a columnar liquid crystalline mesophase in the condensed phase.


Subject(s)
Thiadiazoles , Esters , Ether , Ethers , Pyrroles , Static Electricity
SELECTION OF CITATIONS
SEARCH DETAIL
...