Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39091868

ABSTRACT

Elucidating the neural basis of perceptual biases, such as those produced by visual illusions, can provide powerful insights into the neural mechanisms of perceptual inference. However, studying the subjective percepts of animals poses a fundamental challenge: unlike human participants, animals cannot be verbally instructed to report what they see, hear, or feel. Instead, they must be trained to perform a task for reward, and researchers must infer from their responses what the animal perceived. However, animals' responses are shaped by reward feedback, thus raising the major concern that the reward regimen may alter the animal's decision strategy or even intrinsic perceptual biases. We developed a method that estimates perceptual bias during task performance and then computes the reward for each trial based on the evolving estimate of the animal's perceptual bias. Our approach makes use of multiple stimulus contexts to dissociate perceptual biases from decision-related biases. Starting with an informative prior, our Bayesian method updates a posterior over the perceptual bias after each trial. The prior can be specified based on data from past sessions, thus reducing the variability of the online estimates and allowing it to converge to a stable estimate over a small number of trials. After validating our method on synthetic data, we apply it to estimate perceptual biases of monkeys in a motion direction discrimination task in which varying background optic flow induces robust perceptual biases. This method overcomes an important challenge to understanding the neural basis of subjective percepts.

2.
Nat Hum Behav ; 8(6): 1209-1224, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38671286

ABSTRACT

Modern virtual reality (VR) devices record six-degree-of-freedom kinematic data with high spatial and temporal resolution and display high-resolution stereoscopic three-dimensional graphics. These capabilities make VR a powerful tool for many types of behavioural research, including studies of sensorimotor, perceptual and cognitive functions. Here we introduce Ouvrai, an open-source solution that facilitates the design and execution of remote VR studies, capitalizing on the surge in VR headset ownership. This tool allows researchers to develop sophisticated experiments using cutting-edge web technologies such as WebXR to enable browser-based VR, without compromising on experimental design. Ouvrai's features include easy installation, intuitive JavaScript templates, a component library managing front- and backend processes and a streamlined workflow. It integrates with Firebase, Prolific and Amazon Mechanical Turk and provides data processing utilities for analysis. Unlike other tools, Ouvrai remains free, with researchers managing their web hosting and cloud database via personal Firebase accounts. Ouvrai is not limited to VR studies; researchers can also develop and run desktop or touchscreen studies using the same streamlined workflow. Through three distinct motor learning experiments, we confirm Ouvrai's efficiency and viability for conducting remote VR studies.


Subject(s)
Neurosciences , Virtual Reality , Humans , Neurosciences/methods , Male , Adult , User-Computer Interface , Software , Female , Young Adult , Behavioral Research/methods
3.
bioRxiv ; 2023 Nov 18.
Article in English | MEDLINE | ID: mdl-38014023

ABSTRACT

Since motion can only be defined relative to a reference frame, which reference frame guides perception? A century of psychophysical studies has produced conflicting evidence: retinotopic, egocentric, world-centric, or even object-centric. We introduce a hierarchical Bayesian model mapping retinal velocities to perceived velocities. Our model mirrors the structure in the world, in which visual elements move within causally connected reference frames. Friction renders velocities in these reference frames mostly stationary, formalized by an additional delta component (at zero) in the prior. Inverting this model automatically segments visual inputs into groups, groups into supergroups, etc. and "perceives" motion in the appropriate reference frame. Critical model predictions are supported by two new experiments, and fitting our model to the data allows us to infer the subjective set of reference frames used by individual observers. Our model provides a quantitative normative justification for key Gestalt principles providing inspiration for building better models of visual processing in general.

4.
Nat Neurosci ; 26(12): 2063-2072, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37996525

ABSTRACT

The Bayesian brain hypothesis is one of the most influential ideas in neuroscience. However, unstated differences in how Bayesian ideas are operationalized make it difficult to draw general conclusions about how Bayesian computations map onto neural circuits. Here, we identify one such unstated difference: some theories ask how neural circuits could recover information about the world from sensory neural activity (Bayesian decoding), whereas others ask how neural circuits could implement inference in an internal model (Bayesian encoding). These two approaches require profoundly different assumptions and lead to different interpretations of empirical data. We contrast them in terms of motivations, empirical support and relationship to neural data. We also use a simple model to argue that encoding and decoding models are complementary rather than competing. Appreciating the distinction between Bayesian encoding and Bayesian decoding will help to organize future work and enable stronger empirical tests about the nature of inference in the brain.


Subject(s)
Models, Neurological , Neurosciences , Bayes Theorem , Brain
5.
J Neurosci ; 43(7): 1074-1088, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36796842

ABSTRACT

In recent years, the field of neuroscience has gone through rapid experimental advances and a significant increase in the use of quantitative and computational methods. This growth has created a need for clearer analyses of the theory and modeling approaches used in the field. This issue is particularly complex in neuroscience because the field studies phenomena that cross a wide range of scales and often require consideration at varying degrees of abstraction, from precise biophysical interactions to the computations they implement. We argue that a pragmatic perspective of science, in which descriptive, mechanistic, and normative models and theories each play a distinct role in defining and bridging levels of abstraction, will facilitate neuroscientific practice. This analysis leads to methodological suggestions, including selecting a level of abstraction that is appropriate for a given problem, identifying transfer functions to connect models and data, and the use of models themselves as a form of experiment.


Subject(s)
Neurosciences , Biophysics
6.
Elife ; 112022 05 17.
Article in English | MEDLINE | ID: mdl-35579424

ABSTRACT

Autism spectrum disorder (ASD) is characterized by a panoply of social, communicative, and sensory anomalies. As such, a central goal of computational psychiatry is to ascribe the heterogenous phenotypes observed in ASD to a limited set of canonical computations that may have gone awry in the disorder. Here, we posit causal inference - the process of inferring a causal structure linking sensory signals to hidden world causes - as one such computation. We show that audio-visual integration is intact in ASD and in line with optimal models of cue combination, yet multisensory behavior is anomalous in ASD because this group operates under an internal model favoring integration (vs. segregation). Paradoxically, during explicit reports of common cause across spatial or temporal disparities, individuals with ASD were less and not more likely to report common cause, particularly at small cue disparities. Formal model fitting revealed differences in both the prior probability for common cause (p-common) and choice biases, which are dissociable in implicit but not explicit causal inference tasks. Together, this pattern of results suggests (i) different internal models in attributing world causes to sensory signals in ASD relative to neurotypical individuals given identical sensory cues, and (ii) the presence of an explicit compensatory mechanism in ASD, with these individuals putatively having learned to compensate for their bias to integrate in explicit reports.


Subject(s)
Autism Spectrum Disorder , Causality , Cues , Humans
7.
PLoS One ; 14(9): e0215417, 2019.
Article in English | MEDLINE | ID: mdl-31498804

ABSTRACT

In order to survive and function in the world, we must understand the content of our environment. This requires us to gather and parse complex, sometimes conflicting, information. Yet, the brain is capable of translating sensory stimuli from disparate modalities into a cohesive and accurate percept with little conscious effort. Previous studies of multisensory integration have suggested that the brain's integration of cues is well-approximated by an ideal observer implementing Bayesian causal inference. However, behavioral data from tasks that include only one stimulus in each modality fail to capture what is in nature a complex process. Here we employed an auditory spatial discrimination task in which listeners were asked to determine on which side they heard one of two concurrently presented sounds. We compared two visual conditions in which task-uninformative shapes were presented in the center of the screen, or spatially aligned with the auditory stimuli. We found that performance on the auditory task improved when the visual stimuli were spatially aligned with the auditory stimuli-even though the shapes provided no information about which side the auditory target was on. We also demonstrate that a model of a Bayesian ideal observer performing causal inference cannot explain this improvement, demonstrating that humans deviate systematically from the ideal observer model.


Subject(s)
Brain/physiology , Models, Neurological , Pattern Recognition, Physiological/physiology , Pattern Recognition, Visual/physiology , Psychomotor Performance/physiology , Space Perception/physiology , Acoustic Stimulation , Adult , Attention/physiology , Bayes Theorem , Cues , Female , Functional Laterality , Humans , Male , Photic Stimulation , Psychophysics/methods , Reaction Time/physiology
8.
Front Neural Circuits ; 11: 45, 2017.
Article in English | MEDLINE | ID: mdl-28680395

ABSTRACT

Basal ganglia circuit is an important subcortical system of the brain thought to be responsible for reward-based learning. Striatum, the largest nucleus of the basal ganglia, serves as an input port that maps cortical information. Microanatomical studies show that the striatum is a mosaic of specialized input-output structures called striosomes and regions of the surrounding matrix called the matrisomes. We have developed a computational model of the striatum using layered self-organizing maps to capture the center-surround structure seen experimentally and explain its functional significance. We believe that these structural components could build representations of state and action spaces in different environments. The striatum model is then integrated with other components of basal ganglia, making it capable of solving reinforcement learning tasks. We have proposed a biologically plausible mechanism of action-based learning where the striosome biases the matrisome activity toward a preferred action. Several studies indicate that the striatum is critical in solving context dependent problems. We build on this hypothesis and the proposed model exploits the modularity of the striatum to efficiently solve such tasks.


Subject(s)
Computer Simulation , Corpus Striatum/anatomy & histology , Corpus Striatum/physiology , Models, Neurological , Reinforcement, Psychology , Animals , Neural Pathways/anatomy & histology , Neural Pathways/physiology
SELECTION OF CITATIONS
SEARCH DETAIL