Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Int J Mol Sci ; 25(9)2024 May 03.
Article En | MEDLINE | ID: mdl-38732230

Cannabinoid receptors CB1R and CB2R are G-protein coupled receptors acted upon by endocannabinoids (eCBs), namely 2-arachidonoylglycerol (2-AG) and N-arachidonoyl ethanolamine (AEA), with unique pharmacology and modulate disparate physiological processes. A genetically encoded GPCR activation-based sensor that was developed recently-GRABeCB2.0-has been shown to be capable of monitoring real-time changes in eCB levels in cultured cells and preclinical models. However, its responsiveness to exogenous synthetic cannabinoid agents, particularly antagonists and allosteric modulators, has not been extensively characterized. This current study expands upon the pharmacological characteristics of GRABeCB2.0 to enhance the understanding of fluorescent signal alterations in response to various functionally indiscriminate cannabinoid ligands. The results from this study could enhance the utility of the GRABeCB2.0 sensor for in vitro as well as in vivo studies of cannabinoid action and may aid in the development of novel ligands.


Endocannabinoids , Receptor, Cannabinoid, CB1 , Receptor, Cannabinoid, CB2 , Humans , Receptor, Cannabinoid, CB2/metabolism , Endocannabinoids/metabolism , Receptor, Cannabinoid, CB1/metabolism , HEK293 Cells , Ligands , Glycerides/pharmacology , Biosensing Techniques/methods , Cannabinoid Receptor Modulators/pharmacology , Animals , Arachidonic Acids/pharmacology , Arachidonic Acids/metabolism
2.
FASEB J ; 36(9): e22482, 2022 09.
Article En | MEDLINE | ID: mdl-35947136

Hepatocellular carcinoma (HCC) is a leading cause of cancer deaths, and the most common primary liver malignancy to present in the clinic. With the exception of liver transplant, treatment options for advanced HCC are limited, but improved tumor stratification could open the door to new treatment options. Previously, we demonstrated that the circadian regulator Aryl Hydrocarbon-Like Receptor Like 1 (ARNTL, or Bmal1) and the liver-enriched nuclear factor 4 alpha (HNF4α) are robustly co-expressed in healthy liver but incompatible in the context of HCC. Faulty circadian expression of HNF4α- either by isoform switching, or loss of expression- results in an increased risk for HCC, while BMAL1 gain-of-function in HNF4α-positive HCC results in apoptosis and tumor regression. We hypothesize that the transcriptional programs of HNF4α and BMAL1 are antagonistic in liver disease and HCC. Here, we study this antagonism by generating a mouse model with inducible loss of hepatic HNF4α and BMAL1 expression. The results reveal that simultaneous loss of HNF4α and BMAL1 is protective against fatty liver and HCC in carcinogen-induced liver injury and in the "STAM" model of liver disease. Furthermore, our results suggest that targeting Bmal1 expression in the absence of HNF4α inhibits HCC growth and progression. Specifically, pharmacological suppression of Bmal1 in HNF4α-deficient, BMAL1-positive HCC with REV-ERB agonist SR9009 impairs tumor cell proliferation and migration in a REV-ERB-dependent manner, while having no effect on healthy hepatocytes. Collectively, our results suggest that stratification of HCC based on HNF4α and BMAL1 expression may provide a new perspective on HCC properties and potential targeted therapeutics.


Carcinoma, Hepatocellular , Liver Neoplasms , ARNTL Transcription Factors/genetics , ARNTL Transcription Factors/metabolism , Animals , Carcinogenesis/genetics , Carcinogenesis/pathology , Carcinoma, Hepatocellular/metabolism , Cell Transformation, Neoplastic/pathology , Liver/metabolism , Liver Neoplasms/metabolism , Mice
4.
Nat Commun ; 12(1): 3482, 2021 06 09.
Article En | MEDLINE | ID: mdl-34108488

Hyperplastic expansion of white adipose tissue (WAT) relies in part on the proliferation of adipocyte precursor cells residing in the stromal vascular cell fraction (SVF) of WAT. This study reveals a circadian clock- and feeding-induced diurnal pattern of cell proliferation in the SVF of visceral and subcutaneous WAT in vivo, with higher proliferation of visceral adipocyte progenitor cells subsequent to feeding in lean mice. Fasting or loss of rhythmic feeding eliminates this diurnal proliferation, while high fat feeding or genetic disruption of the molecular circadian clock modifies the temporal expression of proliferation genes and impinges on diurnal SVF proliferation in eWAT. Surprisingly, high fat diet reversal, sufficient to reverse elevated SVF proliferation in eWAT, was insufficient in restoring diurnal patterns of SVF proliferation, suggesting that high fat diet induces a sustained disruption of the adipose circadian clock. In conclusion, the circadian clock and feeding simultaneously impart dynamic, regulatory control of adipocyte progenitor proliferation, which may be a critical determinant of adipose tissue expansion and health over time.


Adipose Tissue, White/cytology , Cell Proliferation , Circadian Rhythm/physiology , Adipocytes/cytology , Animals , Cell Proliferation/genetics , Circadian Clocks/genetics , Circadian Clocks/physiology , Circadian Rhythm/genetics , Diet, High-Fat , Epididymis/cytology , Fasting , Humans , Male , Mice , Stromal Cells/cytology , Subcutaneous Fat/cytology , Subcutaneous Fat/physiology
5.
Int J Obes (Lond) ; 43(3): 567-580, 2019 03.
Article En | MEDLINE | ID: mdl-29795456

OBJECTIVE: Nutrient challenge in the form of a high fat (HF) diet causes a reversible reprogramming of the hepatic circadian clock. This depends in part on changes in the recruitment of the circadian transcription factor BMAL1 to genome targets, though the causes and extent of disruption to hepatic and extra-hepatic BMAL1 are unknown. The objective of the study was to determine whether HF diet-induced alterations in BMAL1 function occur across insulin-resistant tissues and whether this could be reversed by restoring whole body insulin sensitivity. METHODS: BMAL1 subcellular localization and target recruitment was analyzed in several metabolically active peripheral tissues, including liver, muscle, and adipose tissue under conditions of diet-induced obesity. Animals made obese with HF diet were subsequently treated with rosiglitazone to determine whether resensitizing insulin-resistant tissues to insulin restored hepatic and extra-hepatic BMAL1 function. RESULTS: These data reveal that both hepatic and extra-hepatic BMAL1 activity are altered under conditions of obesity and insulin resistance. Restoring whole body insulin sensitivity by treatment with the antidiabetic drug rosiglitazone is sufficient to restore changes in HF diet-induced BMAL1 recruitment and activity in several tissues. CONCLUSIONS: This study reveals that a key mechanism by which HF diet interferes with clock function in peripheral tissues is via the development of insulin resistance.


ARNTL Transcription Factors/metabolism , Diet, High-Fat , Hypoglycemic Agents/pharmacology , Rosiglitazone/pharmacology , Adipose Tissue/drug effects , Adipose Tissue/metabolism , Animals , Blood Glucose/drug effects , Insulin/blood , Liver/drug effects , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism
...