Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Plant J ; 96(6): 1299-1308, 2018 12.
Article in English | MEDLINE | ID: mdl-30242919

ABSTRACT

Over 450 structurally distinct fatty acids are synthesized by plants. We have developed PlantFAdb.org, an internet-based database that allows users to search and display fatty acid composition data for over 9000 plants. PlantFAdb includes more than 17 000 data tables from >3000 publications and hundreds of unpublished analyses. This unique feature allows users to easily explore chemotaxonomic relationships between fatty acid structures and plant species by displaying these relationships on dynamic phylogenetic trees. Users can navigate between order, family, genus and species by clicking on nodes in the tree. The weight percentage of a selected fatty acid is indicated on phylogenetic trees and clicking in the graph leads to underlying data tables and publications. The display of chemotaxonomy allows users to quickly explore the diversity of plant species that produce each fatty acid and that can provide insights into the evolution of biosynthetic pathways. Fatty acid compositions and other parameters from each plant species have also been compiled from multiple publications on a single page in graphical form. Links provide simple and intuitive navigation between fatty acid structures, plant species, data tables and the publications that underlie the datasets. In addition to providing an introduction to this resource, this report illustrates examples of insights that can be derived from PlantFAdb. Based on the number of plant families and orders that have not yet been surveyed we estimate that a large number of novel fatty acid structures are still to be discovered in plants.


Subject(s)
Databases, Chemical , Fatty Acids/chemistry , Plants/metabolism , Fatty Acids/metabolism , Molecular Structure , Phylogeny , Plants/genetics
2.
Plant Cell Rep ; 34(4): 519-32, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25487439

ABSTRACT

KEY MESSAGE: We have constructed and annotated a web-based database of over 280 Arabidopsis genes that have characterized mutants associated with Arabidopsis acyl lipid metabolism. Mutants have played a fundamental role in gene discovery and in understanding the function of genes involved in plant acyl lipid metabolism. The first mutant in Arabidopsis lipid metabolism (fad4) was described in 1985. Since that time, characterization of mutants in more than 280 genes associated with acyl lipid metabolism has been reported. This review provides a brief background and history on identification of mutants in acyl lipid metabolism, an analysis of the distribution of mutants in different areas of acyl lipid metabolism and presents an annotated database (ARALIPmutantDB) of these mutants. The database provides information on the phenotypes of mutants, pathways and enzymes/proteins associated with the mutants, and allows rapid access via hyperlinks to summaries of information about each mutant and to literature that provides information on the lipid composition of the mutants. In addition, the database of mutants is integrated within the ARALIP plant acyl lipid metabolism website ( http://aralip.plantbiology.msu.edu ) so that information on mutants is displayed on and can be accessed from metabolic pathway maps. Mutants for at least 30% of the genes in the database have multiple names, which have been compiled here to reduce ambiguities in searches for information. The database should also provide a tool for exploring the relationships between mutants in acyl lipid-related genes and their lipid phenotypes and point to opportunities for further research.


Subject(s)
Arabidopsis/genetics , Arabidopsis/metabolism , Databases, Genetic , Lipid Metabolism/genetics , Mutation/genetics , Acylation , Arabidopsis/enzymology , Arabidopsis Proteins/metabolism , Lipase/metabolism , Molecular Sequence Annotation , Reverse Genetics , Transcription Factors/metabolism
3.
Arabidopsis Book ; 11: e0161, 2013.
Article in English | MEDLINE | ID: mdl-23505340

ABSTRACT

Acyl lipids in Arabidopsis and all other plants have a myriad of diverse functions. These include providing the core diffusion barrier of the membranes that separates cells and subcellular organelles. This function alone involves more than 10 membrane lipid classes, including the phospholipids, galactolipids, and sphingolipids, and within each class the variations in acyl chain composition expand the number of structures to several hundred possible molecular species. Acyl lipids in the form of triacylglycerol account for 35% of the weight of Arabidopsis seeds and represent their major form of carbon and energy storage. A layer of cutin and cuticular waxes that restricts the loss of water and provides protection from invasions by pathogens and other stresses covers the entire aerial surface of Arabidopsis. Similar functions are provided by suberin and its associated waxes that are localized in roots, seed coats, and abscission zones and are produced in response to wounding. This chapter focuses on the metabolic pathways that are associated with the biosynthesis and degradation of the acyl lipids mentioned above. These pathways, enzymes, and genes are also presented in detail in an associated website (ARALIP: http://aralip.plantbiology.msu.edu/). Protocols and methods used for analysis of Arabidopsis lipids are provided. Finally, a detailed summary of the composition of Arabidopsis lipids is provided in three figures and 15 tables.

4.
Arabidopsis Book ; 8: e0133, 2010.
Article in English | MEDLINE | ID: mdl-22303259

ABSTRACT

Acyl lipids in Arabidopsis and all other plants have a myriad of diverse functions. These include providing the core diffusion barrier of the membranes that separates cells and subcellular organelles. This function alone involves more than 10 membrane lipid classes, including the phospholipids, galactolipids, and sphingolipids, and within each class the variations in acyl chain composition expand the number of structures to several hundred possible molecular species. Acyl lipids in the form of triacylglycerol account for 35% of the weight of Arabidopsis seeds and represent their major form of carbon and energy storage. A layer of cutin and cuticular waxes that restricts the loss of water and provides protection from invasions by pathogens and other stresses covers the entire aerial surface of Arabidopsis. Similar functions are provided by suberin and its associated waxes that are localized in roots, seed coats, and abscission zones and are produced in response to wounding. This chapter focuses on the metabolic pathways that are associated with the biosynthesis and degradation of the acyl lipids mentioned above. These pathways, enzymes, and genes are also presented in detail in an associated website (ARALIP: http://aralip.plantbiology.msu.edu/). Protocols and methods used for analysis of Arabidopsis lipids are provided. Finally, a detailed summary of the composition of Arabidopsis lipids is provided in three figures and 15 tables.

5.
Planta ; 198(4): 517-525, 1996 Apr.
Article in English | MEDLINE | ID: mdl-28321661

ABSTRACT

Acetyl-CoA carboxylase (ACCase; EC 6.4.1.2) is a regulatory enzyme of fatty acid synthesis, and in some higher-plant plastids is a multi-subunit complex consisting of biotin carboxylase (BC), biotin-carboxyl carrier protein (BCCP), and carboxyl transferase (CT). We recently described a Nicotiana tabacum L. (tobacco) cDNA with a deduced amino acid sequence similar to that of prokaryotic BC. We here provide further biochemical and immunological evidence that this higher-plant polypeptide is an authentic BC component of ACCase. The BC protein co-purified with ACCase activity and with BCCP during gel permeation chromatography of Pisum sativum L. (pea) chloroplast proteins. Antibodies to the Ricinus communis L. (castor) BC co-precipitated ACCase activity and BCCP. During castor seed development, ACCase activity and the levels of BC and BCCP increased and subsequently decreased in parallel, indicating their coordinate regulation. The BC protein comprised about 0.8% of the soluble protein in developing castor seed, and less than 0.05% of the protein in young leaf or root. Polypeptides cross-reacting with antibodies to castor BC were detected in several dicotyledons and in the monocotyledons Hemerocallis fulva L. (day lily), Iris L., and Allium cepa L. (onion), but not in the Gramineae species Hordeum vulgare L. (barley) and Panicum virgatum L. (switchgrass). The castor endosperm and pea chloroplast ACCases were not significantly inhibited by long-chain acyl-acyl carrier protein, free fatty acids or acyl carrier protein. The BC polypeptide was detected throughout Brassica napus L. (rapeseed) embryo development, in contrast to the multi-functional ACCase isoenzyme which was only detected early in development. These results firmly establish the identity of the BC polypeptide in plants and provide insight into the structure, regulation and roles of higherplant ACCases.

SELECTION OF CITATIONS
SEARCH DETAIL
...