Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
ACS Omega ; 7(37): 33511-33517, 2022 Sep 20.
Article in English | MEDLINE | ID: mdl-36157757

ABSTRACT

Patients receiving healthcare are at higher risk of acquiring healthcare-associated infections, which cause a significant number of illnesses and deaths. Most pathogens responsible for these infections are highly resistant to multiple antibiotics, prompting the need for discovery of new therapeutics to combat these evolved threats. We synthesized structural derivatives of (+)-puupehenone, a marine natural product, and observed growth inhibition of several clinically relevant Gram-positive bacteria, particularly Clostridioides difficile. The most potent compounds-(+)-puupehenone, 1, 15, 19, and 20-all inhibited C. difficile in the range of 2.0-4.0 µg/mL. Additionally, when present in the range of 1-8 µg/mL, a subset of active compounds-(+)-puupehenone, 1, 6, 15, and 20-greatly reduced the ability of C. difficile to produce exotoxins, which are required for disease in infected hosts. Our findings showcase a promising class of compounds for potential drug development against Gram-positive pathogens, such as C. difficile.

2.
ACS Omega ; 7(27): 23487-23496, 2022 Jul 12.
Article in English | MEDLINE | ID: mdl-35847331

ABSTRACT

Tuberculosis is a disease caused primarily by the organism Mycobacterium tuberculosis (Mtb), which claims about 1.5 million lives every year. A challenge that impedes the elimination of this pathogen is the ability of Mtb to remain dormant after primary infection, thus creating a reservoir for the disease in the population that reactivates under more ideal conditions. A better understanding of the physiology of dormant Mtb and therapeutics able to kill these phenotypically tolerant bacilli will be critical for completely eradicating Mtb. Our groups are focusing on characterizing the activity of derivatives of the marine natural product (+)-puupehenone (1). Recently, the Rohde group reported that puupehedione (2) and 15-α-methoxypuupehenol (3) exhibit enhanced activity in an in vitro multi-stress dormancy model of Mtb. To optimize the antimycobacterial activity of these terpenoids, novel 15-α-methoxy- and 15-α-acetoxy-puupehenol esters were prepared from (+)-puupehenone (1) accessed through a (+)-sclareolide-derived ß-hydroxyl aldehyde. For added diversity, various congeners related to (1) were also prepared from a common borono-sclareolide donor, which resulted in the synthesis of epi-puupehenol and the natural products (+)-chromazonarol and (+)-yahazunol. In total, we generated a library of 24 compounds, of which 14 were found to be active against Mtb, and the most active compounds retained the enhanced activity against dormant Mtb seen in the parent compound. Several of the 15-α-methoxy- and 15-α-acetoxy-puupehenol esters possessed potent activity against actively dividing and dormant Mtb. Intriguingly, the closely related triisobutyl derivative 16 showed similar activity to 1 in actively dividing Mtb but lost about 178-fold activity against dormant Mtb. However, the monopivaloyl compound 13 showed a modest 3- to 4-fold loss in activity in both actively dividing and dormant Mtb relative to the activity of 1 revealing the importance of the free OH at C19 supporting the potential role of quinone methide formation as critical for activity in dormant Mtb. Elucidating important structure-activity relationships and the mechanism of action of this natural product-inspired chemical series may yield insights into vulnerable drug targets in dormant bacilli and new therapeutics to more effectively target dormant Mtb.

3.
Front Mol Biosci ; 8: 750502, 2021.
Article in English | MEDLINE | ID: mdl-34820424

ABSTRACT

Pseudomonas aeruginosa is a highly prevalent gram-negative bacterium that is becoming more difficult to treat because of increasing antibiotic resistance. As chemotherapeutic treatment options diminish, there is an increased need for vaccines. However, the creation of an effective P. aeruginosa vaccine has been elusive despite intensive efforts. Thus, new paradigms for vaccine antigens should be explored to develop effective vaccines. In these studies, we have focused on the synthesis of two L-rhamnose-bearing epitopes common to glycoforms I and II of the outer core domain of Pseudomonas aeruginosa lipopolysaccharide, α-L-Rha-(1→6)-α-D-Glc-(1→4)-α-D-GalN-(Ala)-α-aminooxy (3) and α-L-Rha-(1→3)-ß-D-Glc-(1→3)-α-D-GalN-(Ala)-α-aminooxy (4), respectively. The target trisaccharides were both prepared starting from a suitably protected galactosamine glycoside, followed by successive deprotection and glycosylation with suitably protected D-glucose and L-rhamnose thioglycosides. Global deprotection resulted in the formation of targets 3 and 4 in 22 and 35% yield each. Care was required to modify basic reaction conditions to avoid early deprotection of the N-oxysuccinamido group. In summary, trisaccharides related to the L-rhamnose-bearing epitopes common to glycoforms I and II of the outer core domain of Pseudomonas aeruginosa lipopolysaccharide have been prepared as their aminooxy glycosides. The latter are expected to be useful in chemoselective oxime-based bioconjugation reactions to form Pseudomonas aeruginosa vaccines.

5.
Sci Rep ; 11(1): 13413, 2021 06 28.
Article in English | MEDLINE | ID: mdl-34183716

ABSTRACT

Glycoside hydrolases (GH) are a large family of hydrolytic enzymes found in all domains of life. As such, they control a plethora of normal and pathogenic biological functions. Thus, understanding selective inhibition of GH enzymes at the atomic level can lead to the identification of new classes of therapeutics. In these studies, we identified a 4-⍺-glucoside of valienamine (8) as an inhibitor of Streptomyces coelicolor (Sco) GlgE1-V279S which belongs to the GH13 Carbohydrate Active EnZyme family. The results obtained from the dose-response experiments show that 8 at a concentration of 1000 µM reduced the enzyme activity of Sco GlgE1-V279S by 65%. The synthetic route to 8 and a closely related 4-⍺-glucoside of validamine (7) was achieved starting from readily available D-maltose. A key step in the synthesis was a chelation-controlled addition of vinylmagnesium bromide to a maltose-derived enone intermediate. X-ray structures of both 7 and 8 in complex with Sco GlgE1-V279S were solved to resolutions of 1.75 and 1.83 Å, respectively. Structural analysis revealed the valienamine derivative 8 binds the enzyme in an E2 conformation for the cyclohexene fragment. Also, the cyclohexene fragment shows a new hydrogen-bonding contact from the pseudo-diaxial C(3)-OH to the catalytic nucleophile Asp 394 at the enzyme active site. Asp 394, in fact, forms a bidentate interaction with both the C(3)-OH and C(7)-OH of the inhibitor. In contrast, compound 7 disrupts the catalytic sidechain interaction network of Sco GlgE1-V279S via steric interactions resulting in a conformation change in Asp 394. These findings will have implications for the design other aminocarbasugar-based GH13-inhibitors and will be useful for identifying more potent and selective inhibitors.


Subject(s)
Bacterial Proteins/antagonists & inhibitors , Cyclohexenes/chemical synthesis , Glucosides/chemical synthesis , Glycoside Hydrolase Inhibitors/chemical synthesis , Glycoside Hydrolases/chemistry , Hexosamines/chemical synthesis , Streptomyces coelicolor/enzymology , Amino Acid Substitution , Amino Acids/chemistry , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Carbohydrate Conformation , Catalytic Domain , Crystallography, X-Ray , Cyclohexenes/pharmacology , Glucosides/pharmacology , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolases/genetics , Hexosamines/pharmacology , Maltose/chemistry , Models, Molecular , Mutation, Missense , Nuclear Magnetic Resonance, Biomolecular , Point Mutation , Stereoisomerism , Streptomyces coelicolor/genetics
6.
ChemistryOpen ; 5(1): 47-50, 2016 Feb.
Article in English | MEDLINE | ID: mdl-27308211

ABSTRACT

A convergent [3+2] block synthetic strategy was developed for the synthesis of the pentasaccharide repeating unit of the cell wall O-antigen of Escherichia coli O11 strain in excellent yield in a minimum number of steps. Several suitably functionalized thioglycoside derivatives were used as glycosyl donors during the synthesis of the target compound. A thioglycoside was the glycosyl donor used to couple with another thioglycoside derivative in a highly stereoselective manner exploiting the difference of their reactivity profile. A combination of Niodosuccinimide (NIS) and perchloric acid supported over silica gel (HClO4-SiO2) was used as a thiophilic glycosylation activator system in all stereoselective glycosylation reactions. HClO4-SiO2 acted as a user-friendly solid acid catalyst. Yields were very good in all glycosylation steps with a high stereoselective outcome. The synthetic pentasaccharide could be coupled to an appropriate protein to furnish a glycoconjugate derivative for its use in immunochemical studies.

7.
Carbohydr Res ; 391: 9-15, 2014 Jun 04.
Article in English | MEDLINE | ID: mdl-24736048

ABSTRACT

Synthesis of the pentasaccharide repeating unit of the O-antigen of Escherichia coli O13 strain has been achieved using a straightforward linear synthetic strategy. Similar reaction conditions have been used for all glycosylations as well as protective group manipulations. All intermediate steps are high yielding and the glycosylation steps are stereoselective. The synthesized pentasaccharide was subjected to conformational analysis using 2D ROESY NMR spectral analysis and molecular dynamics (MD) simulation to get detailed information on conformation of the molecule in aqueous solution.


Subject(s)
Cell Wall/chemistry , Escherichia coli/chemistry , Escherichia coli/cytology , O Antigens/chemistry , Oligosaccharides/chemical synthesis , Carbohydrate Conformation , Oligosaccharides/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL