Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Sci Rep ; 10(1): 14336, 2020 08 31.
Article in English | MEDLINE | ID: mdl-32868771

ABSTRACT

Although less attention was paid to understanding physical localization changes in cell nuclei recently, depicting chromatin interaction maps is a topic of high interest. Here, we focused on defining extensive physical changes in chromatin organization in the process of skeletal myoblast differentiation. Based on RNA profiling data and 3D imaging of myogenic (NCAM1, DES, MYOG, ACTN3, MYF5, MYF6, ACTN2, and MYH2) and other selected genes (HPRT1, CDH15, DPP4 and VCAM1), we observed correlations between the following: (1) expression change and localization, (2) a gene and its genomic neighbourhood expression and (3) intra-chromosome and microscopical locus-centromere distances. In particular, we demonstrated the negative regulation of DPP4 mRNA (p < 0.001) and protein (p < 0.05) in differentiated myotubes, which coincided with a localization change of the DPP4 locus towards the nuclear lamina (p < 0.001) and chromosome 2 centromere (p < 0.001). Furthermore, we discuss the possible role of DPP4 in myoblasts (supported by an inhibition assay). We also provide positive regulation examples (VCAM1 and MYH2). Overall, we describe for the first time existing mechanisms of spatial gene expression regulation in myoblasts that might explain the issue of heterogenic responses observed during muscle regenerative therapies.


Subject(s)
Cell Differentiation , Chromatin/metabolism , Dipeptidyl Peptidase 4/metabolism , Gene Expression , Myoblasts, Skeletal/metabolism , Humans , Myoblasts, Skeletal/cytology
3.
Exp Cell Res ; 328(2): 429-43, 2014 Nov 01.
Article in English | MEDLINE | ID: mdl-24995995

ABSTRACT

Hepatic stellate cells (HSC) are well known initiators of hepatic fibrosis. After liver cell damage, HSC transdifferentiate into proliferative myofibroblasts, representing the major source of extracellular matrix in the fibrotic organ. Recent studies also demonstrate a role of HSC as progenitor or stem cell like cells in liver regeneration. Lhx2 is described as stem cell maintaining factor in different organs and as an inhibitory transcription factor in HSC activation. Here we examined whether a continuous expression of Lhx2 in HSC could attenuate their activation and whether Lhx2 could serve as a potential target for antifibrotic gene therapy. Therefore, we evaluated an adenoviral mediated overexpression of Lhx2 in primary HSC and investigated mRNA expression patterns by qRT-PCR as well as the activation status by different in vitro assays. HSC revealed a marked increase in activation markers like smooth muscle actin alpha (αSMA) and collagen 1α independent from adenoviral transduction. Lhx2 overexpression resulted in attenuated cell viability as shown by a slightly hampered migratory and contractile phenotype of HSC. Expression of stem cell factors or signaling components was also unaffected by Lhx2. Summarizing these results, we found no antifibrotic or stem cell maintaining effect of Lhx2 overexpression in primary HSC.


Subject(s)
Adenoviridae/genetics , Cell Survival/genetics , Hepatic Stellate Cells/metabolism , LIM-Homeodomain Proteins/genetics , Transcription Factors/genetics , Actins/genetics , Animals , Cell Transdifferentiation/genetics , Cells, Cultured , Collagen Type I/genetics , Female , HEK293 Cells , Humans , Liver Cirrhosis/genetics , Liver Regeneration/genetics , Mice , Mice, Inbred BALB C , Phenotype , RNA, Messenger/genetics
4.
Reproduction ; 148(1): 55-72, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24686459

ABSTRACT

The long-standing view of 'immortal germline vs mortal soma' poses a fundamental question in biology concerning how oocytes age in molecular terms. A mainstream hypothesis is that maternal ageing of oocytes has its roots in gene transcription. Investigating the proteins resulting from mRNA translation would reveal how far the levels of functionally available proteins correlate with mRNAs and would offer novel insights into the changes oocytes undergo during maternal ageing. Gene ontology (GO) semantic analysis revealed a high similarity of the detected proteome (2324 proteins) to the transcriptome (22 334 mRNAs), although not all proteins had a cognate mRNA. Concerning their dynamics, fourfold changes of abundance were more frequent in the proteome (3%) than the transcriptome (0.05%), with no correlation. Whereas proteins associated with the nucleus (e.g. structural maintenance of chromosomes and spindle-assembly checkpoints) were largely represented among those that change in oocytes during maternal ageing; proteins associated with oxidative stress/damage (e.g. superoxide dismutase) were infrequent. These quantitative alterations are either impoverishing or enriching. Using GO analysis, these alterations do not relate in any simple way to the classic signature of ageing known from somatic tissues. Given the lack of correlation, we conclude that proteome analysis of mouse oocytes may not be surrogated with transcriptome analysis. Furthermore, we conclude that the classic features of ageing may not be transposed from somatic tissues to oocytes in a one-to-one fashion. Overall, there is more to the maternal ageing of oocytes than mere cellular deterioration exemplified by the notorious increase of meiotic aneuploidy.


Subject(s)
Aging/metabolism , Maternal Age , Oocytes/metabolism , Proteins/metabolism , Proteomics , Aging/genetics , Animals , Female , Gene Expression Profiling , Gene Expression Regulation, Developmental , Gene Regulatory Networks , Mice , Protein Interaction Maps , Proteins/genetics , Proteomics/methods , RNA, Messenger/metabolism
5.
Cell Commun Signal ; 11: 85, 2013 Nov 08.
Article in English | MEDLINE | ID: mdl-24206562

ABSTRACT

BACKGROUND: Small molecule effects can be represented by active signaling pathways within functional networks. Identifying these can help to design new strategies to utilize known small molecules, e.g. to trigger specific cellular transformations or to reposition known drugs. RESULTS: We developed CellFateScout that uses the method of Latent Variables to turn differential high-throughput expression data and a functional network into a list of active signaling pathways. Applying it to Connectivity Map data, i.e., differential expression data describing small molecule effects, we then generated a Human Small Molecule Mechanisms Database. Finally, using a list of active signaling pathways as query, a similarity search can identify small molecules from the database that may trigger these pathways. We validated our approach systematically, using expression data of small molecule perturbations, yielding better predictions than popular bioinformatics tools. CONCLUSIONS: CellFateScout can be used to select small molecules for their desired effects. The CellFateScout Cytoscape plugin, a tutorial and the Human Small Molecule Mechanisms Database are available at https://sourceforge.net/projects/cellfatescout/ under LGPLv2 license.


Subject(s)
Databases, Chemical , Models, Biological , Models, Statistical , Signal Transduction , Small Molecule Libraries/chemistry , Animals , Computational Biology , Humans , Internet , Mice
6.
PLoS One ; 8(9): e73231, 2013.
Article in English | MEDLINE | ID: mdl-24019912

ABSTRACT

Cell differentiation is based on a synchronised orchestra of complex pathways of intrinsic and extrinsic signals that manifest in the induced expression of specific transcription factors and pivotal genes within the nucleus. One cannot ignore the epigenetic status of differentiating cells, comprising not only histones and DNA modifications but also the spatial and temporal intranuclear chromatin organisation, which is an important regulator of nuclear processes. In the present study, we investigated the nuclear architecture of human primary myoblasts and myocytes in an in vitro culture, with reference to global changes in genomic expression. Repositioning of the chromosomal centromeres, along with alterations in the nuclear shape and volume, was observed as a consequence of myotube formation. Moreover, the microarray data showed that during in vitro myogenesis cells tend to silence rather than induce gene expression. The creation of a chromosome map marked with gene expression changes that were at least 2-fold confirmed the observation. Additionally, almost all of the chromosomal centromeres in the differentiated cells preferentially localised near the nuclear periphery when compared to the undifferentiated cells. The exceptions were chromosomes 7 and 11, in which we were unable to confirm the centromere repositioning. In our opinion, this is the first reported observation of the movement of chromosomal centromeres along differentiating myogenic cells. Based on these data we can conclude that the myogenic differentiation with global gene expression changes is accompanied by the spatial repositioning of chromosomes and chromatin remodelling, which are important processes that regulate cell differentiation.


Subject(s)
Cell Differentiation , Cell Nucleus , Muscle, Skeletal/cytology , Stem Cells/cytology , Centromere , Chromosomes, Human, Pair 11 , Chromosomes, Human, Pair 7 , Humans , In Situ Hybridization, Fluorescence , In Vitro Techniques , Oligonucleotide Array Sequence Analysis
7.
PLoS One ; 7(6): e36850, 2012.
Article in English | MEDLINE | ID: mdl-22693623

ABSTRACT

While reprogramming a foreign nucleus after somatic cell nuclear transfer (SCNT), the enucleated oocyte (ooplasm) must signal that biomass and cellular requirements changed compared to the nucleus donor cell. Using cells expressing nuclear-encoded but mitochondria-targeted EGFP, a strategy was developed to directly distinguish maternal and embryonic products, testing ooplasm demands on transcriptional and post-transcriptional activity during reprogramming. Specifically, we compared transcript and protein levels for EGFP and other products in pre-implantation SCNT embryos, side-by-side to fertilized controls (embryos produced from the same oocyte pool, by intracytoplasmic injection of sperm containing the EGFP transgene). We observed that while EGFP transcript abundance is not different, protein levels are significantly lower in SCNT compared to fertilized blastocysts. This was not observed for Gapdh and Actb, whose protein reflected mRNA. This transcript-protein relationship indicates that the somatic nucleus can keep up with ooplasm transcript demands, whilst transcription and translation mismatch occurs after SCNT for certain mRNAs. We further detected metabolic disturbances after SCNT, suggesting a place among forces regulating post-transcriptional changes during reprogramming. Our observations ascribe oocyte-induced reprogramming with previously unsuspected regulatory dimensions, in that presence of functional proteins may no longer be inferred from mRNA, but rather depend on post-transcriptional regulation possibly modulated through metabolism.


Subject(s)
Cellular Reprogramming/physiology , Mitochondria/metabolism , Oocytes/cytology , Adenosine Diphosphate/metabolism , Adenosine Triphosphate/metabolism , Animals , Calcium/metabolism , Cells, Cultured , Cellular Reprogramming/genetics , Cryoelectron Microscopy , Female , Hydrogen Peroxide/metabolism , Membrane Potential, Mitochondrial/genetics , Membrane Potential, Mitochondrial/immunology , Membrane Potential, Mitochondrial/physiology , Mice , Mice, Inbred C57BL , Microscopy, Electron, Transmission , Mitochondria/ultrastructure , Oocytes/ultrastructure
8.
PLoS One ; 7(4): e35322, 2012.
Article in English | MEDLINE | ID: mdl-22530006

ABSTRACT

Establishment of totipotency after somatic cell nuclear transfer (NT) requires not only reprogramming of gene expression, but also conversion of the cell cycle from quiescence to the precisely timed sequence of embryonic cleavage. Inadequate adaptation of the somatic nucleus to the embryonic cell cycle regime may lay the foundation for NT embryo failure and their reported lower cell counts. We combined bright field and fluorescence imaging of histone H(2b)-GFP expressing mouse embryos, to record cell divisions up to the blastocyst stage. This allowed us to quantitatively analyze cleavage kinetics of cloned embryos and revealed an extended and inconstant duration of the second and third cell cycles compared to fertilized controls generated by intracytoplasmic sperm injection (ICSI). Compared to fertilized embryos, slow and fast cleaving NT embryos presented similar rates of errors in M phase, but were considerably less tolerant to mitotic errors and underwent cleavage arrest. Although NT embryos vary substantially in their speed of cell cycle progression, transcriptome analysis did not detect systematic differences between fast and slow NT embryos. Profiling of amino acid turnover during pre-implantation development revealed that NT embryos consume lower amounts of amino acids, in particular arginine, than fertilized embryos until morula stage. An increased arginine supplementation enhanced development to blastocyst and increased embryo cell numbers. We conclude that a cell cycle delay, which is independent of pluripotency marker reactivation, and metabolic restraints reduce cell counts of NT embryos and impede their development.


Subject(s)
Cell Cycle/physiology , Cellular Reprogramming/physiology , Amino Acids/metabolism , Animals , Arginine/metabolism , Blastocyst/metabolism , Cluster Analysis , DNA Damage , Embryo Transfer , Embryo, Mammalian/cytology , Embryo, Mammalian/physiology , Embryonic Development/physiology , Female , Gene Expression Regulation, Developmental , Kinetics , Male , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Nuclear Transfer Techniques , Time-Lapse Imaging , Transgenes
9.
J Biomed Opt ; 17(1): 017007, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22352673

ABSTRACT

Raman microspectroscopy was used to examine the biochemical composition and molecular structure of extracellular matrix in spongy and subchondral bone collected from patients with clinical and radiological evidence of idiopathic osteoarthritis of the hip and from patients who underwent a femoral neck fracture, as a result of trauma, without previous clinical and radiological evidence of osteoarthritis. The objectives of the study were to determine the levels of mineralization, carbonate accumulation and collagen quality in bone tissue. The subchondral bone from osteoarthritis patients in comparison with control subject is less mineralized due to a decrease in the hydroxyapatite concentration. However, the extent of carbonate accumulation in the apatite crystal lattice increases, most likely due to deficient mineralization. The alpha helix to random coil band area ratio reveals that collagen matrix in subchondral bone is more ordered in osteoarthritis disease. The hydroxyapatite to collagen, carbonate apatite to hydroxyapatite and alpha helix to random coil band area ratios are not significantly changed in the differently loaded sites of femoral head. The significant differences also are not visible in mineral and organic constituents' content in spongy bone beneath the subchondral bone in osteoarthritis disease.


Subject(s)
Femur Head/chemistry , Femur Head/pathology , Osteoarthritis/pathology , Spectrum Analysis, Raman/methods , Analysis of Variance , Collagen/analysis , Collagen/chemistry , Durapatite/analysis , Durapatite/chemistry , Hip Joint/chemistry , Hip Joint/pathology , Humans
10.
J Proteome Res ; 10(5): 2140-53, 2011 May 06.
Article in English | MEDLINE | ID: mdl-21344949

ABSTRACT

The oocyte is the only cell of the body that can reprogram transplanted somatic nuclei and sets the gold standard for all reprogramming methods. Therefore, an in-depth characterization of its proteome holds promise to advance our understanding of reprogramming and germ cell biology. To date, limitations on oocyte numbers and proteomic technology have impeded this task, and the search for reprogramming factors has been conducted in embryonic stem (ES) cells instead. Here, we present the proteome of metaphase II mouse oocytes to a depth of 3699 proteins, which substantially extends the number of proteins identified until now in mouse oocytes and is comparable by size to the proteome of undifferentiated mouse ES cells. Twenty-eight oocyte proteins, also detected in ES cells, match the criteria of our multilevel approach to screen for reprogramming factors, namely nuclear localization, chromatin modification, and catalytic activity. Our oocyte proteome catalog thus advances the definition of the "reprogrammome", the set of molecules--proteins, RNAs, lipids, and small molecules--that enable reprogramming.


Subject(s)
Cellular Reprogramming/genetics , Metaphase/genetics , Oocytes/metabolism , Proteins/metabolism , Proteomics/methods , Animals , Chromatography, Liquid , Computational Biology , DNA Primers/genetics , Embryonic Stem Cells/metabolism , Female , Mass Spectrometry , Mice , Mice, Transgenic , Microscopy, Fluorescence , Nuclear Transfer Techniques , Reverse Transcriptase Polymerase Chain Reaction
11.
BMC Syst Biol ; 4: 164, 2010 Nov 30.
Article in English | MEDLINE | ID: mdl-21118483

ABSTRACT

BACKGROUND: Experimentalists are overwhelmed by high-throughput data and there is an urgent need to condense information into simple hypotheses. For example, large amounts of microarray and deep sequencing data are becoming available, describing a variety of experimental conditions such as gene knockout and knockdown, the effect of interventions, and the differences between tissues and cell lines. RESULTS: To address this challenge, we developed a method, implemented as a Cytoscape plugin called ExprEssence. As input we take a network of interaction, stimulation and/or inhibition links between genes/proteins, and differential data, such as gene expression data, tracking an intervention or development in time. We condense the network, highlighting those links across which the largest changes can be observed. Highlighting is based on a simple formula inspired by the law of mass action. We can interactively modify the threshold for highlighting and instantaneously visualize results. We applied ExprEssence to three scenarios describing kidney podocyte biology, pluripotency and ageing: 1) We identify putative processes involved in podocyte (de-)differentiation and validate one prediction experimentally. 2) We predict and validate the expression level of a transcription factor involved in pluripotency. 3) Finally, we generate plausible hypotheses on the role of apoptosis, cell cycle deregulation and DNA repair in ageing data obtained from the hippocampus. CONCLUSION: Reducing the size of gene/protein networks to the few links affected by large changes allows to screen for putative mechanistic relationships among the genes/proteins that are involved in adaptation to different experimental conditions, yielding important hypotheses, insights and suggestions for new experiments. We note that we do not focus on the identification of 'active subnetworks'. Instead we focus on the identification of single links (which may or may not form subnetworks), and these single links are much easier to validate experimentally than submodules. ExprEssence is available at http://sourceforge.net/projects/expressence/.


Subject(s)
Computational Biology/methods , Gene Regulatory Networks , Proteins/metabolism , Software , Aging/genetics , Aging/metabolism , Animals , Cell Line , Humans , Mice , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Podocytes/metabolism , Proteins/genetics , Reproducibility of Results
12.
PLoS One ; 5(12): e15165, 2010 Dec 10.
Article in English | MEDLINE | ID: mdl-21179244

ABSTRACT

BACKGROUND: Analysis of the mechanisms underlying pluripotency and reprogramming would benefit substantially from easy access to an electronic network of genes, proteins and mechanisms. Moreover, interpreting gene expression data needs to move beyond just the identification of the up-/downregulation of key genes and of overrepresented processes and pathways, towards clarifying the essential effects of the experiment in molecular terms. METHODOLOGY/PRINCIPAL FINDINGS: We have assembled a network of 574 molecular interactions, stimulations and inhibitions, based on a collection of research data from 177 publications until June 2010, involving 274 mouse genes/proteins, all in a standard electronic format, enabling analyses by readily available software such as Cytoscape and its plugins. The network includes the core circuit of Oct4 (Pou5f1), Sox2 and Nanog, its periphery (such as Stat3, Klf4, Esrrb, and c-Myc), connections to upstream signaling pathways (such as Activin, WNT, FGF, BMP, Insulin, Notch and LIF), and epigenetic regulators as well as some other relevant genes/proteins, such as proteins involved in nuclear import/export. We describe the general properties of the network, as well as a Gene Ontology analysis of the genes included. We use several expression data sets to condense the network to a set of network links that are affected in the course of an experiment, yielding hypotheses about the underlying mechanisms. CONCLUSIONS/SIGNIFICANCE: We have initiated an electronic data repository that will be useful to understand pluripotency and to facilitate the interpretation of high-throughput data. To keep up with the growth of knowledge on the fundamental processes of pluripotency and reprogramming, we suggest to combine Wiki and social networking software towards a community curation system that is easy to use and flexible, and tailored to provide a benefit for the scientist, and to improve communication and exchange of research results. A PluriNetWork tutorial is available at http://www.ibima.med.uni-rostock.de/IBIMA/PluriNetWork/.


Subject(s)
Pluripotent Stem Cells/cytology , Algorithms , Animals , Cell Differentiation/genetics , Epigenomics , Gene Expression Profiling , Gene Expression Regulation , Gene Expression Regulation, Developmental , Kruppel-Like Factor 4 , Mice , Models, Biological , Models, Genetic , Protein Binding/genetics , Signal Transduction , Software , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...