Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 20
1.
Sci Total Environ ; 942: 173403, 2024 Sep 10.
Article En | MEDLINE | ID: mdl-38844217

With 24 million inhabitants and 6.6 million vehicles on the roads, Karachi, Pakistan ranks among the world's most polluted cities due to high levels of fine particulate matter (PM2.5). This study aims to investigate PM2.5 mass, seasonal and temporal variability, chemical characterization, source apportionment, and health risk assessment at two urban sites in Karachi. Samples were analyzed using ion chromatography and dual-wavelength optical transmissometer for various inorganic components (anions, cations, and trace elements) and black carbon (BC). Several PM2.5 pollution episodes were frequently observed, with annual mean concentrations at Kemari (140 ± 179 µg/m3) and Malir (95 ± 40.9 µg/m3) being significantly above the World Health Organization's guidelines of 5 µg/m3. Chemical composition at both sites exhibited seasonal variability, with higher pollution levels in winter and fall and lower concentrations in summer. The annual average BC concentrations were 4.86 ± 5.29 µg/m3 and 4.52 ± 3.68 µg/m3, respectively. A Positive Matrix Factorization (PMF) analysis identified 5 factors, crustal, sea salt, vehicular exhaust, fossil-fuel combustion, and industrial emission. The health risk assessment indicated a higher number of deaths in colder seasons (fall and winter) at the Kemari (328,794 and 287,814) and Malir (228,406 and 165,737) sites and potential non-carcinogenic and carcinogenic risks to children from metals. The non-carcinogenic risk of PM2.5 bound Pb, Fe, Zn, Mn, Cr, Cu and Ni via inhalation exposure were within the acceptable level (<1) for adults. However, potential non-carcinogenic and carcinogenic health risk posed by Pb and Cr through inhalation were observed for children. The findings exhibit critical levels of air pollution that exceed the safe limits in Karachi, posing significant health risks to children and sensitive groups. Our study underscores the urgent need for effective emission control strategies and policy interventions to mitigate these air pollution risks.


Air Pollutants , Air Pollution , Environmental Monitoring , Particulate Matter , Air Pollution/statistics & numerical data , Humans , Air Pollutants/analysis , Particulate Matter/analysis , Pakistan , Risk Assessment , Cities , Environmental Exposure/statistics & numerical data
2.
Environ Res ; 252(Pt 1): 118862, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38574984

The escalating issue of air pollution has become a significant concern in urban regions, including Islamabad, Pakistan, due to the rise in air pollutant emissions driven by economic and industrial expansion. To gain a deeper understanding of air pollution, a study was conducted during winter 2022-2023, assessing physical, chemical, and biological factors in Islamabad. The findings revealed that the average concentration of fine particulate matter (PM2.5) was notably greater than the World Health Organization (WHO) guidelines, reaching 133.39 µg/m³. Additionally, the average concentration of bacteria (308.64 CFU/m³) was notably greater than that of fungi (203.55 CFU/m³) throughout the study. Analytical analyses, including SEM-EDS and FTIR, showed that the PM2.5 in Islamabad is composed of various particles such as soot aggregates, coal fly ash, minerals, bio-particles, and some unidentified particles. EF analysis distinguished PM2.5 sources, enhancing understanding of pollutants origin, whereas Spearman's correlation analysis elucidated constituent interactions, further explaining air quality impact. The results from the Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-OES) indicated a gradual increase in the total elemental composition of PM2.5 from autumn to winter, maintaining high levels throughout the winter season. Furthermore, a significant variation was found in the mass concentration of PM2.5 when comparing samples collected in the morning and evening. The study also identified the presence of semi-volatile organic compounds (SVOCs) in PM2.5 samples, including polycyclic aromatic hydrocarbons (PAHs) and phenolic compounds, with notable variations in their concentrations. Utilizing health risk assessment models developed by the US EPA, we estimated the potential health risks associated with PM2.5 exposure, highlighting the urgency of addressing air quality issues. These findings provide valuable insights into the sources and composition of PM2.5 in Islamabad, contributing to a comprehensive understanding of air quality and its potential environmental and health implications.


Air Pollutants , Particulate Matter , Particulate Matter/analysis , Pakistan , Air Pollutants/analysis , Humans , Environmental Monitoring , Cities , Particle Size , Air Pollution/analysis
3.
Rev Environ Health ; 2023 Dec 27.
Article En | MEDLINE | ID: mdl-38148484

In the last few decades, indoor air quality (IAQ) has become a major threat to public health. It is the fifth leading cause of premature death globally. It has been estimated that people spend ∼90 % of their time in an indoor environment. Consequently, IAQ has significant health effects. Although IAQ-related standards and guidelines, policies, and monitoring plans have been developed in a few countries, there remain several global inequalities and challenges. This review paper aims to comprehensively synthesize the current status of widely accepted IAQ guidelines and standards. It analyzes their global implementation and effectiveness to offer insights into challenges and disparities in IAQ policies and practices. However, the complexity of domestic environments and the diversity of international standards impede effective implementation. This manuscript evaluates international, national, and regional IAQ guidelines, emphasizing similarities and differences. In addition, it highlights knowledge gaps and challenges, urging the international scientific community, policymakers, and stakeholders to collaborate to advance IAQ standards and guidelines. The analysis evaluates the efficacy of guidelines, identifies deficiencies, and offers recommendations for the future of domestic air quality standards.

4.
Environ Pollut ; 336: 122401, 2023 Nov 01.
Article En | MEDLINE | ID: mdl-37598930

This study investigates the size distribution, microbial composition, and antibiotic resistance (ABR) of airborne bioaerosols at a suburban location in Doha, Qatar between October 2021 and January 2022. Samples were collected using an Andersen six-stage viable cascade impactor and a liquid impinger. Findings showed that the mean bacteria concentration (464 CFU/m3) was significantly higher than that of fungi (242 CFU/m3) during the study period. Both bacteria and fungi were most abundant in the aerodynamic size fractions of 1.10-2.21 µm, with peak concentrations observed in the mornings and lowest concentrations in the afternoons across all size fractions. A total of 24 different culturable species were identified, with the most abundant ones being Pasteurella pneumotropica (9.71%), Pantoea spp. 1 (8.73%), and Proteus penneri (7.77%) spp. At the phylum level, the bacterial community configurations during the autumn and winter seasons were nearly identical as revealed by molecular genomics, with Proteobacteria being the most predominant, followed by Firmicutes, Bacteroidetes, Acidobacteriota, and Planctomycetota. However, there was a significant variation in dominant genera between autumn and winter. The most abundant genera included Sphingomonas, Paraburkholderia, Comamonas, Bacillus, and Lysinibacillus. Several bacterial genera identified in this study have important public health and ecological implications, including the risk of respiratory tract infections. Furthermore, the study found that ABR was highest in December, with bioaerosols exhibiting resistance to at least 5 out of 10 antibiotics, and 100% resistance to Metronidazole in all samples. Metagenomics analysis revealed the presence of various airborne bacteria that were not detected through culture-dependent methods. This study provides valuable insights into the airborne microbial composition, temporal variability and ABR in the Arabian Gulf region.

5.
Sci Total Environ ; 868: 161474, 2023 Apr 10.
Article En | MEDLINE | ID: mdl-36646217

Like many urban centers in developing countries, the effect of air pollution in Karachi is understudied. The goal of this study was to determine the chemical characterization, temporal and seasonal variability, sources, and health impacts of fine particulate matter (PM2.5) in Karachi, Pakistan. Daily samples of PM2.5 were collected using a low-volume air sampler at two different sites (Makro and Karachi University) over the four seasons between October 2009 and August 2010. Samples were analyzed for black carbon (BC), trace metals, and water-soluble ions. Results showed that the annual average concentrations of PM2.5 at Makro and Karachi University were 114 ± 115 and 71.7 ± 56.4 µg m-3, respectively, about 22.8 and 14.3-fold higher than the World Health Organization annual guideline of 5 µg m-3. BC concentrations were 3.39 ± 1.97 and 2.70 ± 2.06 µg m-3, respectively. The concentrations of PM2.5, BC, trace metals, and ions at the two sites showed clear seasonal trends, with higher concentrations in winter and lower concentrations in summer. The trace metals and ionic species with the highest concentrations were Pb, S, Zn, Ca, Si, Cl, Fe, and SO42-. The air quality index in the fall and winter at both sites was about 68 %, which is "unhealthy" for the general population. Positive Matrix Factorization revealed the overall contribution to PM2.5 at the Makro site came from three major sources - industrial emissions (13.3 %), vehicular emissions (59.1 %), and oil combustion (23.3 %). The estimates of expected number of deaths due to short-term exposure to PM2.5 were high in the fall and winter at both sites, with an annual mean estimate of 3592 expected number of deaths at the Makro site. Attention should be paid to the reduction of inorganic pollutants from industrial facilities, vehicular traffic, and fossil fuel combustion, due to their extremely high contribution to PM2.5 mass and health risks.


Air Pollutants , Trace Elements , Humans , Particulate Matter/analysis , Air Pollutants/analysis , Pakistan , Environmental Monitoring/methods , Vehicle Emissions/analysis , Seasons , Trace Elements/analysis , Ions/analysis
6.
Environ Monit Assess ; 195(2): 266, 2023 Jan 05.
Article En | MEDLINE | ID: mdl-36602617

Karachi, Pakistan, is a priority site for air pollution research due to high emissions of air pollutants from vehicular traffic, industrial activities, and biomass burning, as well as rapid growth in population. The objectives of this study were to investigate the levels of gaseous pollutants (NO, NO2, O3, HNO3, and SO2) in Karachi, to determine temporal and seasonal variations, to compare Karachi's air quality with other urban centers, to identify relationships with meteorological conditions, to identify source characterization, and to perform a backward-in-time trajectory analysis and a health impact assessment. Daily samples of gaseous pollutants were collected for six consecutive weeks in each of the four seasons for a year. Daily maximum concentrations of NO (90 parts per billion by volume (ppbv)), NO2 (28.1 ppbv), O3 (57.8 ppbv), and SO2 (331 ppbv) were recorded in fall, while HNO3 (9129 parts per trillion by volume (pptv)) was recorded in spring. Seasonal average concentrations were high in winter for NO (9.47 ± 7.82 ppbv), NO2 (4.84 ± 3.35 ppbv), and O3 (8.92 ± 7.65 ppbv), while HNO3 (629 ± 1316 pptv) and SO2 (20.2 ± 39.4 ppbv) were high in spring and fall, respectively. The observed SO2 seasonal average concentration in fall (20.2 ± 39.4) was 5 times higher than that in summer (3.97 ± 2.77) with the fall 24-h average (120 ppbv) exceeding the WHO daily guideline (7.64 ppbv) by a factor of about 15.7. A health impact assessment estimated an increase of 1200 and 569 deaths due to short-term exposure to SO2 in fall and spring, respectively. Chronic daily intake estimated risk per 1000 was 0.99, 0.47, 0.45, and 0.26 for SO2 in fall, NO in winter, O3 in winter, and NO2 in spring, respectively. This study confirms the effect of poor urban air quality on public health and demonstrated the influence of photochemical reactions as well as unfavorable meteorological conditions on the formation of secondary pollutants.


Air Pollutants , Air Pollution , Environmental Pollutants , Air Pollutants/analysis , Nitrogen Dioxide/analysis , Pakistan , Environmental Monitoring/methods , Air Pollution/analysis , Sulfur Dioxide/analysis , Seasons , Environmental Pollutants/analysis , Particulate Matter/analysis , China
7.
Environ Res ; 193: 110443, 2021 Feb.
Article En | MEDLINE | ID: mdl-33171120

The rapid transmission tendency, severity, and wide geographical spread of newly emerged novel coronavirus (SARS-CoV-2) in different environmental matrices, including water, air, and soil, has posed severe health, environmental, energy, and economic challenges worldwide. Despite the severe health effects, unprecedented improvements in air quality in many countries due to emergency measures, and public behavior changes have been reported. SARS-CoV-2 has been detected in air and sewage samples in several studies across the globe. The use of wastewater-based epidemiology (WBE) could be a valuable method to monitor the outbreak of COVID-19, which requires fast and reliable methods for virus detection in sewage. However, water treatment companies face many pressures due to potential for aerosolization, PPE shortages, and changed usage patterns. In addition, the unprecedented impact of the COVID-19 outbreak on the worldwide economy especially the energy sector, and its impact on our ecosystem required instant responses. This article discusses the recent developments and challenges faced in water, air, and energy resources, including renewables and non-renewables as the significant and interrelated components of the ecosystem. Furthermore, some recommendations have been directed, which may serve as a guideline to the scientists, legislators, and other stakeholders. A future roadmap has been proposed to overcome the tragic effects of COVID-19 and developing a sustainable environmental system to minimize the impact of such infectious outbreaks in the future.


COVID-19 , Pandemics , Ecosystem , Humans , SARS-CoV-2 , Sewage
8.
Environ Pollut ; 252(Pt B): 1412-1422, 2019 Sep.
Article En | MEDLINE | ID: mdl-31260941

Concerning PM2.5 concentrations, rapid industrialization, along with increase in cardiovascular disease (CVD) were recorded in Pakistan, especially in urban areas. The degree to which air pollution contributes to the increase in the burden of CVD in Pakistan has not been assessed due to lack of data. This study aims to describe the characteristics of PM2.5 constituents and investigate the impact of individual PM2.5 constituent on cardiovascular morbidity in Karachi, a mega city in Pakistan. Daily levels of twenty-one constituents of PM2.5 were analyzed using samples collected at two sites from fall 2008 to summer 2009 in Karachi. Hospital admission and emergency room visits due to CVD were collected from two large hospitals. Negative Binominal Regression was used to estimate associations between pollutants and the risk of CVD. All PM2.5 constituents were assessed in single-pollutant models and selected constituents were assessed in multi-pollutant models adjusting for PM2.5 mass and gaseous pollutants. The most common CVD subtypes among our participants were ischemic heart disease, hypertension, heart failure, and cardiomyopathy. Extremely high levels of PM2.5 constituents from fossil-fuels combustion and industrial emissions were observed, with notable peaks in winter. The most consistent associations were found between exposure to nickel (5-14% increase per interquartile range) and cardiovascular hospital admissions. Suggestive evidence was also observed for associations between cardiovascular hospital admissions and Al, Fe, Ti, and nitrate. Our findings suggested that PM2.5 generated from fossil-fuels combustion and road dust resuspension were associated with the increased risk of CVD in Pakistan.


Air Pollutants/analysis , Air Pollution/analysis , Cardiovascular Diseases/chemically induced , Cardiovascular Diseases/epidemiology , Particulate Matter/analysis , Adult , Cardiomyopathies/epidemiology , Cities/epidemiology , Emergency Service, Hospital/statistics & numerical data , Female , Heart Failure/epidemiology , Hospitalization/statistics & numerical data , Humans , Hypertension/epidemiology , Industry/statistics & numerical data , Myocardial Ischemia/epidemiology , Nickel/toxicity , Pakistan/epidemiology , Seasons
9.
Sci Total Environ ; 647: 1314-1322, 2019 Jan 10.
Article En | MEDLINE | ID: mdl-30282325

Health effects linked to PM2.5, have been extensively studied in developed countries of Europe and N. America. However, little has been done in Saudi Arabia and the Middle East. This study evaluated the morbidity risk for cardiovascular (CVD) and respiratory (RD) diseases, associated with PM2.5 exposure in Jeddah, Saudi Arabia. 24-h PM2.5 sampling was conducted at 3 sites for 6 weeks quarterly from Apr 8th, 2013-Feb 18th, 2014 with simultaneous hospital data collection. The relative risks (RRs) for cardiopulmonary morbidity at different moving averages (MAs) of lagged exposures were estimated using a generalized linear time-series model. Elevated risks for RD were associated with recent PM2.5 exposures (0-2 days). RD prevalence was highest in children 0-14 years. Overall, RD morbidity risk ranged from 1.081 (CI: 1.005-1.162) to 1.096 (CI: 1.023-1.173) at MAs_2-4; male, 1.081 (CI: 1.019-1.146) to 1.087 (CI: 1.020-1.159) at MAs_2-3, and female, 1.086 (CI: 1.007-1.172) to 1.093 (CI: 1.017-1.175) at MAs_2-4. Generally, females 0-14 years were the most at risk for RDs with RR = 1.097 (CI: 1.025-1.174) to 1.148 (CI: 1.049-1.257). CVD morbidity risk was highest in ER visits with overall RR = 1.057 (CI: 1.005-1.111) to 1.137 (CI: 1.065-1.213) across all MAs; male, 1.060 (CI: 1.007-1.204) to 1.131 (CI: 1.060-1.208); female, 1.065 (CI: 1.008-1.125) to 1.116 (CI: 1.045-1.192). PM2.5 exposure showed significantly increased cardiopulmonary morbidity risk, accentuating the severe health effects associated with elevated PM2.5 in Jeddah. Overall, females (0-14 years) were more at risk for RD morbidity than males. CVD morbidity risk was relatively higher in males than females, with highest risk observed in age-groups above 40 years.


Air Pollution/statistics & numerical data , Cardiovascular Diseases/epidemiology , Environmental Exposure/statistics & numerical data , Particulate Matter/analysis , Respiratory Tract Diseases/epidemiology , Air Pollutants , Child , Europe , Female , Humans , Male , Middle East , Morbidity/trends , Saudi Arabia/epidemiology
10.
Environ Pollut ; 243(Pt B): 1791-1801, 2018 Dec.
Article En | MEDLINE | ID: mdl-30408866

Air pollution remains a major global public health and environmental issue. We assessed the levels of PM2.5 and delineated the major sources in Makkah, Saudi Arabia. Fine particulate matter (PM2.5) sampling was performed from February 26, 2014-January 27, 2015 in four cycles/seasons. Samples were analyzed for black carbon (BC) and trace elements (TEs). PM2.5 source apportionment was performed by computing enrichment factors (EFs) and positive matrix factorization (PMF). Backward-in time trajectories were used to assess the long-range transport. Significant seasonal variations in PM2.5 were observed, Spring: 113 ±â€¯67.1, Summer: 88.3 ±â€¯36.4, Fall: 67.8 ±â€¯24, and Winter: 67.6 ±â€¯36.9 µg m-3. The 24-h PM2.5 exceeded the WHO (25 µg m-3) and Saudi Arabia's (35 µg m-3) guidelines, with an air quality index (AQI) of "unhealthy to hazardous" to human health. Most delta-C computations were below zero, indicating minor contributions from bio-mass burning. TEs were primarily Si, Ca, Fe, Al, S, K and Mg, suggesting major contributions from soil (Si, Ca, Fe, Al, Mg), and industrial and vehicular emissions (S, Ca, Al, Fe, K). EF defined two broad categories of TEs as: anthropogenic (Cu, Zn, Eu, Cl, Pb, S, Br and Lu), and earth-crust derived (Al, Si, Na, Mg, Rb, K, Zr, Ti, Fe, Mn, Sr, Y, Cr, Ga, Ca, Ni and Ce). Notably, all the anthropogenic TEs can be linked to industrial and vehicular emissions. PMF analysis defined four major sources as: vehicular emissions, 30.1%; industrial-mixed dust, 28.9%; soil/earth-crust, 24.7%; and fossil-fuels/oil combustion, 16.3%. Plots of wind trajectories indicated wind direction and regional transport as major influences on air pollution levels in Makkah. In collusion, anthropogenic emissions contributed >75% of the observed air pollution in Makkah. Developing strategies for reducing anthropogenic emissions are paramount to controlling particulate air pollution in this region.


Air Pollutants/analysis , Air Pollution/analysis , Dust/analysis , Environmental Monitoring , Soot/analysis , Vehicle Emissions/analysis , Coal/analysis , Factor Analysis, Statistical , Humans , Industry , Ions/analysis , Saudi Arabia , Seasons , Soil/chemistry , Trace Elements/analysis , Wind
11.
Sci Rep ; 8(1): 8268, 2018 05 29.
Article En | MEDLINE | ID: mdl-29844504

Deteriorating water quality from aging infrastructure, growing threat of pollution from industrialization and urbanization, and increasing awareness about waterborne diseases are among the factors driving the surge in worldwide use of point-of-entry (POE) and point-of-use (POU) filters. Any adverse influence of such consumer point-of-use systems on quality of water at the tap remains poorly understood, however. We determined the chemical and microbiological changes in municipal water from the point of entry into the household plumbing system until it leaves from the tap in houses equipped with filters. We show that POE/POU devices can induce significant deterioration of the quality of tap water by functioning as traps and reservoirs for sludge, scale, rust, algae or slime deposits which promote microbial growth and biofilm formation in the household water distribution system. With changes in water pressure and physical or chemical disturbance of the plumbing system, the microorganisms and contaminants may be flushed into the tap water. Such changes in quality of household water carry a potential health risk which calls for some introspection in widespread deployment of POE/POU filters in water distribution systems.


Drinking Water/analysis , Micropore Filters/adverse effects , Micropore Filters/trends , Bacteria , Bacterial Infections , Drinking Water/chemistry , Filtration/instrumentation , Humans , Metals , Qatar , Trace Elements , Water Microbiology , Water Purification/instrumentation , Water Quality , Water Supply
12.
Saudi Med J ; 38(9): 905-912, 2017 Sep.
Article En | MEDLINE | ID: mdl-28889148

OBJECTIVES: To assess cardiopulmonary morbidity associated with daily exposures to PM2.5 in Western Coast of Saudi Arabia. Methods: We monitored 24-h PM2.5 and its constituents including black carbon (BC), particulate sulfate (p-SO42-), nitrate (p-NO3-), ammonium (p-NH4+) and trace elements (TEs) at a site in Rabigh, Saudi Arabia from May to June 2013 with simultaneous collection of hospital data (N=2513). Cardiopulmonary morbidity risk was determined in a generalized linear time-series model.  Results: Exposure to PM2.5 was associated with a 7.6% (p=0.056) increase in risk of respiratory disease (RD) in females. Black carbon increased RD morbidity risk by 68.1% (p=0.056) in females. Exposure to p-SO42- increased the cardiovascular disease (CVD) risk by up to 5.3% (p=0.048) in males; and RD by 2.9% (p=0.037) in females and 2.5% (p=0.022) in males. The p-NH4+ increased CVD risk by up to 20.3% (p=0.033) in males; and RD by 10.7% (p=0.014) in females and 8% (p=0.031) in males. No statistically significant association was observed for p-NO3- and TEs exposure. Conclusion: Overall, results show an increased risk for cardiopulmonary morbidity following exposure to air pollution.


Cardiovascular Diseases/chemically induced , Particulate Matter/toxicity , Respiratory Tract Diseases/chemically induced , Female , Humans , Male , Saudi Arabia
13.
Environ Geochem Health ; 39(1): 179-190, 2017 Feb.
Article En | MEDLINE | ID: mdl-27012545

The study determined the risk zone and estimated the population at risk of adverse health effects for arsenic exposure along the bank of River Indus in Pakistan. A cross-sectional survey was conducted in 216 randomly selected villages of one of the districts along River Indus. Wells of ten households from each village were selected to measure arsenic levels. The location of wells was identified using global positioning system device, and spatial variations of the groundwater contamination were assessed using geographical information system tools. Using layers of contaminated drinking water wells according to arsenic levels and population with major landmarks, a risk zone and estimated population at risk were determined, which were exposed to arsenic level ≥10 µg/L. Drinking wells with arsenic levels of ≥10 µg/L were concentrated within 18 km near the river bank. Based on these estimates, a total of 13 million people were exposed to ≥10 µg/L arsenic concentration along the course of River Indus traversing through 27 districts in Pakistan. This information would help the researchers in designing health effect studies on arsenic and policy makers in allocating resources for designing focused interventions for arsenic mitigation in Pakistan. The study methods have implication on similar populations which are affected along rivers due to arsenic contamination.


Arsenic/analysis , Groundwater/analysis , Risk Assessment , Water Pollutants, Chemical/analysis , Cross-Sectional Studies , Humans , Pakistan , Rivers
14.
Front Public Health ; 4: 215, 2016.
Article En | MEDLINE | ID: mdl-27747208

Injury was the largest single cause of disability-adjusted life years and death in the Kingdom of Saudi Arabia in 2013. The vast majority of injury-related fatalities are deaths caused by road traffic. Measures to control this serious public health issue, which has significant consequences for both Saudi families and the Saudi economy as a whole, have been underway for years but with little success. Most attempts at intervening revolve around attempts for enforcing stricter traffic laws and by installing automated traffic monitoring systems that will catch law breakers on camera and issue tickets and fines. While there has been much research on various factors that play a role in the high rate of road traffic injury in The Kingdom (e.g., driver behavior, animal collisions, disobeying traffic and pedestrian signals, environmental elements), virtually no attention has been given to examining why Saudi drivers behave the way that they do. This review provides a thorough account of the present situation in Saudi Arabia and discusses how health behavior theory can be used to gain a better understanding of driver behavior.

15.
Ann Glob Health ; 81(3): 342-53, 2015.
Article En | MEDLINE | ID: mdl-26615069

BACKGROUND: Climate change is expected to bring increases in average global temperatures (1.4°C-5.8°C [34.52°F-42.44°F] by 2100) and precipitation levels to varying degrees around the globe. The availability and quality of water will be severely affected, and public health threats from the lack of this valuable resource will be great unless water-scarce nations are able to adapt. Saudi Arabia provides a good example of how the climate and unsustainable human activity go hand in hand in creating stress on and depleting water resources, and an example for adaptation and mitigation. METHOD: A search of the English literature addressing climate change, water scarcity, human health, and related topics was conducted using online resources and databases accessed through the University at Albany, State University of New York library web page. RESULTS: Water scarcity, which encompasses both water availability and water quality, is an important indicator of health. Beyond drinking, water supply is intimately linked to food security, sanitation, and hygiene, which are primary contributors to the global burden of disease. Poor and disadvantaged populations are the ones who will suffer most from the negative effects of climate change on water supply and associated human health issues. Examples of adaptation and mitigation measures that can help reduce the strain on conventional water resources (surface waters and fossil aquifers or groundwater) include desalination, wastewater recycling and reuse, and outsourcing food items or "virtual water trade." These are strategies being used by Saudi Arabia, a country that is water poor primarily due to decades of irresponsible irrigation practices. The human and environmental health risks associated with these adaptation measures are examined. Finally, strategies to protect human health through international collaboration and the importance of these efforts are discussed. CONCLUSION: International, multidisciplinary cooperation and collaboration will be needed to promote global water security and to protect human health, particularly in low-income countries that do not have the resources necessary to adapt on their own.


Climate Change , Drinking Water , Food Supply , Public Health , Sanitation , Water Quality , Water Supply , Global Warming , Groundwater , Humans , Outsourced Services , Recycling , Saudi Arabia , Water Purification
16.
Rev Environ Health ; 30(3): 191-205, 2015.
Article En | MEDLINE | ID: mdl-26351801

Overweight and obesity are now a global epidemic, with more than one in five people qualifying as obese worldwide. These conditions are accompanied by excessive rates of non-communicable diseases (NCDs) related to overweight, like type 2 diabetes mellitus, hypertension, and cardiovascular diseases. Saudi Arabia, which has become increasingly westernized over the past few decades now has one of the highest prevalence rates of overweight and obesity, even in children. This puts the population at great risk for increased rates of NCD mortality. Competing cultures is partly to blame, as the combination of persisting traditional Saudi cultural practices, modern cultural changes, and economic prosperity has created an obesogenic environment that promotes unhealthy eating, sedentary lifestyles, and weight gain. Overweight and obesity are more prevalent in Saudi women than in Saudi men. Interventions targeting the environment are needed in order to promote greater health through healthy eating decisions and increased physical activity or exercise (especially for women).


Obesity/epidemiology , Public Health , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/etiology , Culture , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/etiology , Diet , Humans , Hypertension/epidemiology , Hypertension/etiology , Motor Activity , Obesity/complications , Prevalence , Saudi Arabia/epidemiology
17.
Ecotoxicol Environ Saf ; 116: 129-36, 2015 Jun.
Article En | MEDLINE | ID: mdl-25797412

Life-time human health risk of cancer attributed to trihalomethanes in drinking water in an urban-industrialized area of Karachi (Pakistan) was conducted through multiple pathways of exposure. The extent of cancer risk was compared with USEPA guidelines. Human health cancer risk for total trihalomethanes (TTHMs) through ingestion and dermal routes were estimated in "acceptable-low risk" (≥1.0E-06; ≤5.10E-05), whereas through inhalation route it was estimated under "acceptable-high risk" (≥5.10E-05; ≤1.0E-04) category. However, at some industrial-urban areas cancer risk for CHCl3 were estimated under "unacceptable risk" (≥1.0E-04) through inhalation route.


Drinking Water/analysis , Environmental Exposure/analysis , Trihalomethanes/analysis , Water Pollutants, Chemical/analysis , Humans , Neoplasms/chemically induced , Pakistan , Risk Assessment
18.
Environ Sci Technol ; 48(15): 8529-37, 2014.
Article En | MEDLINE | ID: mdl-24983190

The Arabian Peninsula experiences severe air pollution, the extent and sources of which are poorly documented. Each year in Saudi Arabia this situation is intensified during Hajj, the Holy Pilgrimage of Islam that draws millions of pilgrims to Mecca. An initial study of air quality in Mecca and surrounding holy sites during the 2012 Hajj (October 24-27) revealed strongly elevated levels of the combustion tracer carbon monoxide (CO, up to 57 ppmv) and volatile organic compounds (VOCs) along the pilgrimage route-especially in the tunnels of Mecca-that are a concern for human health. The most abundant VOC was the gasoline evaporation tracer i-pentane, which exceeded 1200 ppbv in the tunnels. Even though VOC concentrations were generally lower during a follow-up non-Hajj sampling period (April 2013), many were still comparable to other large cities suffering from poor air quality. Major VOC sources during the 2012 Hajj study included vehicular exhaust, gasoline evaporation, liquefied petroleum gas, and air conditioners. Of the measured compounds, reactive alkenes and CO showed the strongest potential to form ground-level ozone. Because the number of pilgrims is expected to increase in the future, we present emission reduction strategies to target both combustive and evaporative fossil fuel sources.


Air Pollutants/analysis , Alkanes/analysis , Carbon Dioxide/analysis , Carbon Monoxide/analysis , Volatile Organic Compounds/analysis , Environmental Monitoring , Fossil Fuels , Ozone/chemistry , Saudi Arabia , Vehicle Emissions
20.
Environ Monit Assess ; 120(1-3): 177-85, 2006 Sep.
Article En | MEDLINE | ID: mdl-16741806

The ground and municipal water supply samples of Karachi city were analyzed for their fluoride contents. The fluoride contents in water samples collected from the subsurface and river sources were found below the WHO recommended value for the general health of the people. However, in some industrial areas the groundwater sample showed higher level of fluoride concentration. Continuous monitoring of water resources and cautious fluoridation is suggested to maintain proper status of fluoride concentration in the drinking water.


Environmental Monitoring , Fluorides/analysis , Water Supply , Cities , Pakistan
...