Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Leukoc Biol ; 95(2): 347-55, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24072877

ABSTRACT

We investigated how apoptosis pathways mediated by death receptors and caspase-8 affect cytokine responses and immunity to Leishmania major parasites. Splenic CD4 T cells undergo activation-induced apoptosis, and blockade of FasL-Fas interaction increased IFN-γ and IL-4 cytokine responses to L. major antigens. To block death receptor-induced death, we used mice expressing a T cell-restricted transgene for vFLIP. Inhibition of caspase-8 activation in vFLIP mice enhanced Th1 and Th2 cytokine responses to L. major infection, even in the Th1-prone B6 background. We also observed increased NO production by splenocytes from vFLIP mice upon T cell activation. Despite an exacerbated Th2 response, vFLIP mice controlled better L. major infection, with reduced lesions and lower parasite loads compared with WT mice. Moreover, injection of anti-IL-4 mAb in infected vFLIP mice disrupted control of parasite infection. Therefore, blockade of caspase-8 activity in T cells improves immunity to L. major infection by promoting increased Th1 and Th2 responses.


Subject(s)
Caspase 8/metabolism , Immunity, Cellular/immunology , Leishmania major/immunology , Leishmaniasis/immunology , Leishmaniasis/prevention & control , Th1 Cells/immunology , Th2 Cells/immunology , Animals , Antigens, Protozoan/immunology , Apoptosis , Female , Humans , Interleukin-4/metabolism , Leishmaniasis/parasitology , Lymphocyte Activation/immunology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Transgenic , Viral Proteins/immunology
2.
J Immunol ; 174(10): 6314-21, 2005 May 15.
Article in English | MEDLINE | ID: mdl-15879131

ABSTRACT

During Trypanosoma cruzi infection, T cells up-regulate caspase-8 activity. To assess the role of caspase-8 in T cell-mediated immunity, we investigated the effects of caspase-8 inhibition on T cells in viral FLIP (v-FLIP) transgenic mice. Compared with wild-type controls, increased parasitemia was observed in v-FLIP mice infected with T. cruzi. There was a profound decrease in expansion of both CD4 and CD8 T cell subsets in the spleens of infected v-FLIP mice. We did not find differences in activation ratios of T cells from transgenic or wild-type infected mice. However, the numbers of memory/activated CD4 and CD8 T cells were markedly reduced in v-FLIP mice, possibly due to defective survival. We also found decreased production of IL-2 and increased secretion of type 2 cytokines, IL-4 and IL-10, which could enhance susceptibility to infection. Similar, but less pronounced, alterations were observed in mice treated with the caspase-8 inhibitor, zIETD. Furthermore, blockade of caspase-8 by zIETD in vitro mimicked the effects observed on T. cruzi infection in vivo, affecting the generation of activated/memory T cells and T cell cytokine production. Caspase-8 is also required for NF-kappaB signaling upon T cell activation. Blockade of caspase-8 by either v-FLIP expression or treatment with zIETD peptide decreased NF-kappaB responses to TCR:CD3 engagement in T cell cultures. These results suggest a critical role for caspase-8 in the establishment of T cell memory, cell signaling, and regulation of cytokine responses during protozoan infection.


Subject(s)
Caspases/physiology , Chagas Disease/immunology , Cytokines/biosynthesis , Th2 Cells/enzymology , Th2 Cells/immunology , Trypanosoma cruzi/immunology , Animals , Caspase 8 , Caspase Inhibitors , Caspases/biosynthesis , Cell Differentiation/genetics , Cell Differentiation/immunology , Cells, Cultured , Chagas Disease/enzymology , Chagas Disease/genetics , Cytokines/metabolism , Genetic Predisposition to Disease , Immunity, Cellular/genetics , Immunity, Innate/genetics , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Transgenic , Oligopeptides/pharmacology , Th2 Cells/cytology , Th2 Cells/metabolism , Up-Regulation/genetics , Up-Regulation/immunology , Viral Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL