Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 47
1.
Molecules ; 27(9)2022 Apr 19.
Article En | MEDLINE | ID: mdl-35565975

Considering that practically all reactions that involve nucleotides also involve metal ions, it is evident that the coordination chemistry of nucleotides and their derivatives is an essential corner stone of biological inorganic chemistry. Nucleotides are either directly or indirectly involved in all processes occurring in Nature. It is therefore no surprise that the constituents of nucleotides have been chemically altered-that is, at the nucleobase residue, the sugar moiety, and also at the phosphate group, often with the aim of discovering medically useful compounds. Among such derivatives are acyclic nucleoside phosphonates (ANPs), where the sugar moiety has been replaced by an aliphatic chain (often also containing an ether oxygen atom) and the phosphate group has been replaced by a phosphonate carrying a carbon-phosphorus bond to make the compounds less hydrolysis-sensitive. Several of these ANPs show antiviral activity, and some of them are nowadays used as drugs. The antiviral activity results from the incorporation of the ANPs into the growing nucleic acid chain-i.e., polymerases accept the ANPs as substrates, leading to chain termination because of the missing 3'-hydroxyl group. We have tried in this review to describe the coordination chemistry (mainly) of the adenine nucleotides AMP and ATP and whenever possible to compare it with that of the dianion of 9-[2-(phosphonomethoxy)ethyl]adenine (PMEA2- = adenine(N9)-CH2-CH2-O-CH2-PO32) [or its diphosphate (PMEApp4-)] as a representative of the ANPs. Why is PMEApp4- a better substrate for polymerases than ATP4-? There are three reasons: (i) PMEA2- with its anti-like conformation (like AMP2-) fits well into the active site of the enzyme. (ii) The phosphonate group has an enhanced metal ion affinity because of its increased basicity. (iii) The ether oxygen forms a 5-membered chelate with the neighboring phosphonate and favors thus coordination at the Pα group. Research on ANPs containing a purine residue revealed that the kind and position of the substituent at C2 or C6 has a significant influence on the biological activity. For example, the shift of the (C6)NH2 group in PMEA to the C2 position leads to 9-[2-(phosphonomethoxy)ethyl]-2-aminopurine (PME2AP), an isomer with only a moderate antiviral activity. Removal of (C6)NH2 favors N7 coordination, e.g., of Cu2+, whereas the ether O atom binding of Cu2+ in PMEA facilitates N3 coordination via adjacent 5- and 7-membered chelates, giving rise to a Cu(PMEA)cl/O/N3 isomer. If the metal ions (M2+) are M(α,ß)-M(γ)-coordinated at a triphosphate chain, transphosphorylation occurs (kinases, etc.), whereas metal ion binding in a M(α)-M(ß,γ)-type fashion is relevant for polymerases. It may be noted that with diphosphorylated PMEA, (PMEApp4-), the M(α)-M(ß,γ) binding is favored because of the formation of the 5-membered chelate involving the ether O atom (see above). The self-association tendency of purines leads to the formation of dimeric [M2(ATP)]2(OH)- stacks, which occur in low concentration and where one half of the molecule undergoes the dephosphorylation reaction and the other half stabilizes the structure-i.e., acts as the "enzyme" by bridging the two ATPs. In accord herewith, one may enhance the reaction rate by adding AMP2- to the [Cu2(ATP)]2(OH)- solution, as this leads to the formation of mixed stacked Cu3(ATP)(AMP)(OH)- species, in which AMP2- takes over the structuring role, while the other "half" of the molecule undergoes dephosphorylation. It may be added that Cu3(ATP)(PMEA) or better Cu3(ATP)(PMEA)(OH)- is even a more reactive species than Cu3(ATP)(AMP)(OH)-. - The matrix-assisted self-association and its significance for cell organelles with high ATP concentrations is summarized and discussed, as is, e.g., the effect of tryptophanate (Trp-), which leads to the formation of intramolecular stacks in M(ATP)(Trp)3- complexes (formation degree about 75%). Furthermore, it is well-known that in the active-site cavities of enzymes the dielectric constant, compared with bulk water, is reduced; therefore, we have summarized and discussed the effect of a change in solvent polarity on the stability and structure of binary and ternary complexes: Opposite effects on charged O sites and neutral N sites are observed, and this leads to interesting insights.


Organophosphonates , Adenine/chemistry , Adenosine Monophosphate , Adenosine Triphosphate , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Chelating Agents/chemistry , Ethers , Ions , Metals/chemistry , Nucleosides , Nucleotides/chemistry , Organophosphonates/chemistry , Oxygen , Phosphates , Sugars
2.
Met Ions Life Sci ; 172017 04 10.
Article En | MEDLINE | ID: mdl-28731304

Lead is widely distributed in the environment; it is known to mankind for thousands of years and its toxicity is nowadays (again) well recognized, though on the molecular level only partly understood. One of the reasons for this shortcoming is that the coordination chemistry of the biologically important lead(II) is complicated due to the various coordination numbers it can adopt (CN = 4 to 10) as well as by the 6s2 electron lone pair which, with CN = 4, can shield one side of the Pb2+ coordination sphere. The chapter focuses on the properties of Pb2+ complexes formed with nucleotides and their constituents and derivatives. Covered are (among others) the complexes formed with hydroxy groups and sugar residues, the interactions with the various nucleobases occurring in nucleic acids, as well as complexes of phosphates. It is expeced that such interactions, next to those like with lipids and proteins, are responsible for the toxic properties of lead. To emphasize the special properties of Pb2+ complexes, these are compared as far as possible with the corresponding properties of the Ca2+, Fe2+, Cu2+, Zn2+, and Cd2+ species. It needs to be mentioned that the hard-soft rule fails with Pb2+. This metal ion forms complexes with ligands offering O donors of a stability comparable to that of Cu2+. In contrast, with aromatic N ligands, like imidazole or N7 sites of purines, complex stability is comparable to that of the corresponding Fe2+ complexes. The properties of Pb2+ towards S donor sites are difficult to generalize: On the one hand Pb2+ forms very stable complexes with nucleoside 5'-O-thiomonophosphates by coordinating to nearly 100% at S in the thiophosphate group; however, on the other hand, once a sulfur atom replaces one of the terminal oxygen atoms in the phosphodiester linkage, macrochelate formation of the phosphate-bound Pb2+ occurs with the O and not the S site. Quite generally, the phosphodiester linkage is a relatively weak binding site, but the affinity increases further to the mono- and then to the di- and triphosphate. The same holds for the corresponding nucleotides, though the Pb2+ affinity had to be estimated via that of the Cu2+ complexes for some of these ligands. Complex stability of the pyrimidine-nucleotides (due to their anti conformation) is solely determined by the coordinating tendency of the phosphate group(s); this also holds for the Pb2+ complex of adenosine 5'-monophosphate. For the other purinenucleotides macrochelate formation takes place by the interaction of the phosphate-coordinated Pb2+ with the N7/(C6)O site of, e.g., the guanine residue. The extents of the formation degrees of these chelates are summarized. Unfortunately, information about mixed ligand (ternary) or other higher order comlexes is missing, but still it is hoped that the present overview will help to understand the interaction of Pb2+ with nucleotides and nucleic acids, and especially that it will facilitate further research in this fascinating area.


Lead/chemistry , Nucleotides/chemistry , Carbohydrates/chemistry , Molecular Structure
5.
J Inorg Biochem ; 148: 93-104, 2015 Jul.
Article En | MEDLINE | ID: mdl-25773716

Potentiometric pH titrations and pD dependent (1)H NMR spectroscopy have been applied to study the acidification of the exocyclic amino group of adenine (A) model nucleobases (N9 position blocked by alkyl groups) when carrying trans-a2Pt(II) (with a=NH3 or CH3NH2) entities both at N1 and N7 positions. As demonstrated, in trinuclear complexes containing central A-Pt-A units, it depends on the connectivity pattern of the adenine bases (N7/N7 or N1/N1) and their rotamer states (head-head or head-tail), how large the acidifying effect is. Specifically, a series of trinuclear complexes with (A-N7)-Pt-(N7-A) and (A-N1)-Pt-(N1-A) cross-linking patterns and terminal 9-alkylguanine ligands (9MeGH, 9EtGH) have been analyzed in this respect, and it is shown that, for example, the 9MeA ligands in trans-,trans-,trans-[Pt(NH3)2(N7-9MeA-N1)2{Pt(NH3)2(9EtGH-N7)}2](ClO4)6·6H2O (4a) and trans-,trans-,trans-[Pt(NH3)2(N7-9EtA-N1)2{Pt(CH3NH2)2(9-MeGH-N7)}2](ClO4)6·3H2O (4b) are more acidic, by ca. 1.3 units (first pKa), than the linkage isomer trans-,trans-,trans-[Pt(CH3NH2)2(N1-9MeA-N7)2{Pt(NH3)2(9MeGH-N7)}2](NO3)6·6.25H2O (1b). Overall, acidifications in these types of complexes amount to 7-9 units, bringing the pKa values of such adenine ligands in the best case close to the physiological pH range. Comparison with pKa values of related trinuclear Pt(II) complexes having different co-ligands at the Pt ions, confirms this picture and supports our earlier proposal that the close proximity of the exocyclic amino groups in a head-head arrangement of (A-N7)-Pt-(N7-A), and the stabilization of the resulting N6H(-)⋯H2N6 unit, is key to this difference.


Adenine/chemistry , Coordination Complexes/chemistry , Metals/chemistry , Purines/chemistry , Acids/chemistry , Alkalies/chemistry , Amines/chemistry , Crystallography, X-Ray , Hydrogen-Ion Concentration , Kinetics , Ligands , Magnetic Resonance Spectroscopy , Models, Chemical , Molecular Structure , Nitrogen/chemistry , Organoplatinum Compounds/chemistry , Platinum/chemistry , Potentiometry
6.
J Biol Inorg Chem ; 19(4-5): 691-703, 2014 Jun.
Article En | MEDLINE | ID: mdl-24464134

Aromatic-ring stacking is pronounced among the noncovalent interactions occurring in biosystems and therefore some pertinent features regarding nucleobase residues are summarized. Self-stacking decreases in the series adenine > guanine > hypoxanthine > cytosine ~ uracil. This contrasts with the stability of binary (phen)(N) adducts formed by 1,10-phenanthroline (phen) and a nucleobase residue (N), which is largely independent of the type of purine residue involved, including (N1)H-deprotonated guanine. Furthermore, the association constant for (phen)(A)(0/4-) is rather independent of the type and charge of the adenine derivative (A) considered, be it adenosine or one of its nucleotides, including adenosine 5'-triphosphate (ATP(4-)). The same holds for the corresponding adducts of 2,2'-bipyridine (bpy), although owing to the smaller size of the aromatic-ring system of bpy, the (bpy)(A)(0/4-) adducts are less stable; the same applies correspondingly to the adducts formed with pyrimidines. In accord herewith, [M(bpy)](adenosine)(2+) adducts (M(2+) is Co(2+), Ni(2+), or Cu(2+)) show the same stability as the (bpy)(A)(0/4-) ones. The formation of an ionic bridge between -NH3 (+) and -PO3 (2-), as provided by tryptophan [H(Trp)(±)] and adenosine 5'-monophosphate (AMP(2-)), facilitates recognition and stabilizes the indole-purine stack in [H(Trp)](AMP)(2-). Such indole-purine stacks also occur in nature. Similarly, the formation of a metal ion bridge as occurs, e.g., between Cu(2+) coordinated to phen and the phosphonate group of 9-[2-(phosphonomethoxy)ethyl]adenine (PMEA(2-)) dramatically favors the intramolecular stack in Cu(phen)(PMEA). The consequences of such interactions for biosystems are discussed, especially emphasizing that the energies involved in such isomeric equilibria are small, allowing Nature to shift such equilibria easily.


Nucleic Acids/chemistry , Purines/chemistry , Pyrimidines/chemistry , Organometallic Compounds/chemistry
7.
Chemistry ; 19(25): 8163-81, 2013 Jun 17.
Article En | MEDLINE | ID: mdl-23595830

The intrinsic acid-base properties of the hexa-2'-deoxynucleoside pentaphosphate, d(ApGpGpCpCpT) [=(A1∙G2∙G3∙C4∙C5∙T6)=(HNPP)5⁻] have been determined by ¹H NMR shift experiments. The pKa values of the individual sites of the adenosine (A), guanosine (G), cytidine (C), and thymidine (T) residues were measured in water under single-strand conditions (i.e., 10% D2O, 47 °C, I=0.1 M, NaClO4). These results quantify the release of H⁺ from the two (N7)H⁺ (G∙G), the two (N3)H⁺ (C∙C), and the (N1)H⁺ (A) units, as well as from the two (N1)H (G∙G) and the (N3)H (T) sites. Based on measurements with 2'-deoxynucleosides at 25 °C and 47 °C, they were transferred to pKa values valid in water at 25 °C and I=0.1 M. Intramolecular stacks between the nucleobases A1 and G2 as well as most likely also between G2 and G3 are formed. For HNPP three pKa clusters occur, that is those encompassing the pKa values of 2.44, 2.97, and 3.71 of G2(N7)H⁺, G3(N7)H⁺, and A1(N1)H⁺, respectively, with overlapping buffer regions. The tautomer populations were estimated, giving for the release of a single proton from five-fold protonated H5(HNPP)(±) , the tautomers (G2)N7, (G3)N7, and (A1)N1 with formation degrees of about 74, 22, and 4%, respectively. Tautomer distributions reveal pathways for proton-donating as well as for proton-accepting reactions both being expected to be fast and to occur practically at no "cost". The eight pKa values for H5(HNPP)(±) are compared with data for nucleosides and nucleotides, revealing that the nucleoside residues are in part affected very differently by their neighbors. In addition, the intrinsic acidity constants for the RNA derivative r(A1∙G2∙G3∙C4∙C5∙U6), where U=uridine, were calculated. Finally, the effect of metal ions on the pKa values of nucleobase sites is briefly discussed because in this way deprotonation reactions can easily be shifted to the physiological pH range.


Aptamers, Nucleotide/chemistry , Nucleosides/chemistry , Acids/chemistry , Adenosine/chemistry , Alkalies/chemistry , Guanosine/chemistry , Hexosaminidase A , Hydrogen-Ion Concentration , Isomerism , Magnetic Resonance Spectroscopy , Metals/chemistry , RNA/chemistry , Thymidine/chemistry , Transition Temperature
8.
Met Ions Life Sci ; 11: 191-274, 2013.
Article En | MEDLINE | ID: mdl-23430775

Cadmium(II), commonly classified as a relatively soft metal ion, prefers indeed aromatic-nitrogen sites (e.g., N7 of purines) over oxygen sites (like sugar-hydroxyl groups). However, matters are not that simple, though it is true that the affinity of Cd(2+) towards ribose-hydroxyl groups is very small; yet, a correct orientation brought about by a suitable primary binding site and a reduced solvent polarity, as it is expected to occur in a folded nucleic acid, may facilitate metal ion-hydroxyl group binding very effectively. Cd(2+) prefers the guanine(N7) over the adenine(N7), mainly because of the steric hindrance of the (C6)NH(2) group in the adenine residue. This Cd(2+)-(N7) interaction in a guanine moiety leads to a significant acidification of the (N1)H meaning that the deprotonation reaction occurs now in the physiological pH range. N3 of the cytosine residue, together with the neighboring (C2)O, is also a remarkable Cd(2+) binding site, though replacement of (C2)O by (C2)S enhances the affinity towards Cd(2+) dramatically, giving in addition rise to the deprotonation of the (C4)NH(2) group. The phosphodiester bridge is only a weak binding site but the affinity increases further from the mono- to the di- and the triphosphate. The same also holds for the corresponding nucleotides. Complex stability of the pyrimidine-nucleotides is solely determined by the coordination tendency of the phosphate group(s), whereas in the case of purine-nucleotides macrochelate formation takes place by the interaction of the phosphate-coordinated Cd(2+) with N7. The extents of the formation degrees of these chelates are summarized and the effect of a non-bridging sulfur atom in a thiophosphate group (versus a normal phosphate group) is considered. Mixed ligand complexes containing a nucleotide and a further mono- or bidentate ligand are covered and it is concluded that in these species N7 is released from the coordination sphere of Cd(2+). In the case that the other ligand contains an aromatic residue (e.g., 2,2'-bipyridine or the indole ring of tryptophanate) intramolecular stack formation takes place. With buffers like Tris or Bistris mixed ligand complexes are formed. Cd(2+) coordination to dinucleotides and to dinucleoside monophosphates provides some insights regarding the interaction between Cd(2+) and nucleic acids. Cd(2+) binding to oligonucleotides follows the principles of coordination to its units. The available crystal studies reveal that N7 of purines is the prominent binding site followed by phosphate oxygens and other heteroatoms in nucleic acids. Due to its high thiophilicity, Cd(2+) is regularly used in so-called thiorescue experiments, which lead to the identification of a direct involvement of divalent metal ions in ribozyme catalysis.


Cadmium/chemistry , Carbohydrates/chemistry , Nucleic Acids/chemistry , Nucleotides/chemistry , Phosphates/chemistry
9.
Chem Biodivers ; 9(9): 2008-34, 2012 Sep.
Article En | MEDLINE | ID: mdl-22976988

The acidity constants of twofold protonated, antivirally active, acyclic nucleoside phosphonates (ANPs), H(2)(PE)(±), where PE(2-)=9-[2-(phosphonomethoxy)ethyl]adenine (PMEA(2-)), 2-amino-9-[2-(phosphonomethoxy)ethyl]purine (PME2AP(2-)), 2,6-diamino-9-[2-(phosphonomethoxy)ethyl]purine (PMEDAP(2-)), or 2-amino-6-(dimethylamino)-9-[2-(phosphonomethoxy)ethyl]purine (PME(2A6DMAP)(2-)), as well as the stability constants of the corresponding ternary Cu(Arm)(H;PE)(+) and Cu(Arm)(PE) complexes, where Arm=2,2'-bipyridine (bpy) or 1,10-phenanthroline (phen), are compared. The constants for the systems containing PE(2-)=PMEDAP(2-) and PME(2A6DMAP)(2-) have been determined now by potentiometric pH titrations in aqueous solution at I=0.1M (NaNO(3)) and 25°; the corresponding results for the other ANPs were taken from our earlier work. The basicity of the terminal phosphonate group is very similar for all the ANP(2-) species, whereas the addition of a second amino substituent at the pyrimidine ring of the purine moiety significantly increases the basicity of the N(1) site. Detailed stability-constant comparisons reveal that, in the monoprotonated ternary Cu(Arm)(H;PE)(+) complexes, the proton is at the phosphonate group, that the ether O-atom of the -CH(2)-O-CH(2)-P(O)(2)(-)(OH) residue participates, next to the P(O)(2)(-)(OH) group, to some extent in Cu(Arm)(2+) coordination, and that π-π stacking between the aromatic rings of Cu(Arm)(2+) and the purine moiety is rather important, especially for the H·PMEDAP(-) and H·PME(2A6DMAP)(-) ligands. There are indications that ternary Cu(Arm)(2+)-bridged stacks as well as unbridged (binary) stacks are formed. The ternary Cu(Arm)(PE) complexes are considerably more stable than the corresponding Cu(Arm)(R-PO(3)) species, where R-PO(3)(2-) represents a phosph(on)ate ligand with a group R that is unable to participate in any kind of intramolecular interaction within the complexes. The observed stability enhancements are mainly attributed to intramolecular-stack formation in the Cu(Arm)(PE) complexes and also, to a smaller extent, to the formation of five-membered chelates involving the ether O-atom present in the -CH(2)-O-CH(2)-PO(3)(2-) residue of the PE(2-) species. The quantitative analysis of the intramolecular equilibria involving three structurally different Cu(Arm)(PE) isomers shows that, e.g., ca. 1.5% of the Cu(phen)(PMEDAP) system exist with Cu(phen)(2+) solely coordinated to the phosphonate group, 4.5% as a five-membered chelate involving the ether O-atom of the -CH(2)-O-CH(2)-PO(3)(2-) residue, and 94% with an intramolecular π-π stack between the purine moiety of PMEDAP(2-) and the aromatic rings of phen. Comparison of the various formation degrees of the species formed reveals that, in the Cu(phen)(PE) complexes, intramolecular-stack formation is more pronounced than in the Cu(bpy)(PE) species. Within a given Cu(Arm)(2+) series the stacking intensity increases in the order PME2AP(2-)

2-Aminopurine/chemistry , Adenine/analogs & derivatives , Amines/chemistry , Antiviral Agents/chemistry , Copper/chemistry , Water/chemistry , Adenine/chemistry , Coordination Complexes/chemistry , Drug Stability , Molecular Structure , Solutions/chemistry
12.
Chemistry ; 17(29): 8156-64, 2011 Jul 11.
Article En | MEDLINE | ID: mdl-21626581

Adenosine (Ado) can accept three protons, at N1, N3, and N7, to give H(3) (Ado)(3+) , and thus has three macro acidity constants. Unfortunately, these constants do not reflect the real basicity of the N sites due to internal repulsions, for example, between (N1)H(+) and (N7)H(+). However, these macroconstants are still needed for the evaluations and the first two are taken from our own earlier work, that is, pK(H)(H(3))((Ado)) = -4.02 and pK(H)(H(2))((Ado)) = -1.53; the third one was re-measured as pK(H)(H)((Ado)) = 3.64 ± 0.02 (25 °C; I=0.5 M, NaNO(3)), because it is the main basis for evaluating the intrinsic basicities of N7 and N3. Previously, contradicting results had been published for the micro acidity constant of the (N7)H(+) site; this constant has now been determined in an unequivocal manner, and that of the (N3)H(+) site was obtained for the first time. The micro acidity constants, which describe the release of a proton from an (N)H(+) site under conditions for which the other nitrogen atoms are free and do not carry a proton, decrease in the order pk(N7-N1)(N7(Ado)N1·H)) = 3.63 ± 0.02 > pk(N7-N1)(H·N7(Ado)N1) = 2.15 ± 0.15 > pk(N3-N1,N7)(H·N3(Ado)N1,N7) =1.5 ± 0.3, reflecting the decreasing basicity of the various nitrogen atoms, that is, N1>N7>N3. Application of the above-mentioned microconstants allows one to calculate the percentages (formation degrees) of the tautomers formed for monoprotonated adenosine, H(Ado)(+) , in aqueous solution; the results are 96.1, 3.2, and 0.7% for N7(Ado)N1·H(+), (+)H·N7(Ado)N1, and (+)H·N3(Ado)N1,N7, respectively. These results are in excellent agreement with theoretical DFT calculations. Evidently, H(Ado)(+) exists to the largest part as N7(Ado)N1·H(+) having the proton located at N1; the two other tautomers are minority species, but they still form. These results are not only meaningful for adenosine itself, but are also of relevance for nucleic acids and adenine nucleotides, as they help to understand their metal ion-binding properties; these aspects are briefly discussed.


Adenosine/chemistry , Hydrogen-Ion Concentration , Isomerism , Quantum Theory
14.
Chemistry ; 17(19): 5393-403, 2011 May 02.
Article En | MEDLINE | ID: mdl-21465580

With a view on protein-nucleic acid interactions in the presence of metal ions we studied the "simple" mixed-ligand model systems containing histamine (Ha), the metal ions Ni(2+), Cu(2+), or Zn(2+) (M(2+)), and the nucleotides adenosine 5'-triphosphate (ATP(4-)) or uridine 5'-triphosphate (UTP(4-)), which will both be referred to as nucleoside 5'-triphosphate (NTP(4-)). The stability constants of the ternary M(NTP)(Ha)(2-) complexes were determined in aqueous solution by potentiometric pH titrations. We show for both ternary-complex types, M(ATP)(Ha)(2-) and M(UTP)(Ha)(2-), that intramolecular stacking between the nucleobase and the imidazole residue occurs and that the stacking intensity is approximately the same for a given M(2+) in both types of complexes: The formation degree of the intramolecular stacks is estimated to be 20 to 50%. Consequently, in protein-nucleic acid interactions imidazole-nucleobase stacks may well be of relevance. Furthermore, the well-known formation of macrochelates in binary M(2+) complexes of purine nucleotides, that is, the phosphate-coordinated M(2+) interacts with N7, is confirmed for the M(ATP)(2-) complexes. It is concluded that upon formation of the mixed-ligand complexes the M(2+)-N7 bond is broken and the energy needed for this process corresponds to the stability differences determined for the M(UTP)(Ha)(2-) and M(ATP)(Ha)(2-) complexes. It is, therefore, possible to calculate from these stability differences of the ternary complexes the formation degrees of the binary macrochelates: The closed forms amount to (65±10)%, (75±8)%, and (31±14) % for Ni(ATP)(2-), Cu(ATP)(2-), and Zn(ATP)(2-), respectively, and these percentages agree excellently with previous results obtained by different methods, confirming thus the internal validity of the data and the arguments used in the evaluation processes. Based on the overall results it is suggested that M(ATP)(2-) species, when bound to an enzyme, may exist in a closed macrochelated form only, if no enzyme groups coordinate directly to the metal ion.


Adenosine Triphosphate/chemistry , Coordination Complexes/chemistry , Copper/chemistry , Histamine/chemistry , Models, Chemical , Nickel/chemistry , Uridine Triphosphate/chemistry , Zinc/chemistry , Hydrogen-Ion Concentration , Isomerism , Molecular Structure
16.
Dalton Trans ; 39(27): 6344-54, 2010 Jul 21.
Article En | MEDLINE | ID: mdl-20523923

The acidity constants of 3-fold protonated 9-[(2-phosphonomethoxy)ethyl]-2-aminopurine, H(3)(PME2AP)(+), and the stability constants of the M(H;PME2AP)(+) and M(PME2AP) complexes with M(2+) = Ca(2+), Mg(2+), Mn(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+) or Cd(2+) have been determined by potentiometric pH titrations in aqueous solution (25 degrees C; I = 0.1 M, NaNO(3)). It is concluded that in the M(H;PME2AP)(+) species, the proton is at the phosphonate group and the metal ion at N7 of the purine residue. This "open" form allows macrochelate formation of M(2+) with the monoprotonated phosphonate residue. The formation degree of this macrochelate amounts on average to 64 +/- 13% (3sigma) for those metal ions for which an evaluation was possible (Mn(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+)). The identity of this formation degree indicates that the M(2+)/P(O)(2)(-)(OH) interaction occurs in an outersphere manner. The application of previously determined straight-line plots of log K(M)(M(R-PO(3)))versus pK(H)(H(R-PO(3))) for simple phosph(on)ate ligands, R-PO(3)(2-), where R represents a residue that does not affect metal ion binding, proves that all the M(PME2AP) complexes have larger stabilities than is expected for a sole phosphonate coordination of M(2+). Combination with previous results allows the following conclusions: (i) The increased stability of the M(PME2AP) complexes of Ca(2+), Mg(2+) and Mn(2+) is due to the formation of 5-membered chelates involving the ether-oxygen atom of the -CH(2)-O-CH(2)-PO(3)(2-) residue; the formation degrees of these M(PME2AP)(cl/O) chelates for the mentioned metal ions vary between about 25% (Ca(2+)) to 40% (Mn(2+)). (ii) For the M(PME2AP) complexes of Co(2+), Ni(2+), Cu(2+), Zn(2+) or Cd(2+) next to the mentioned 5-membered chelates a further isomer is formed, namely a macrochelate involving N7, M(PME2AP)(cl/N7). The formation degrees of these macrochelates vary between about 30% (Cd(2+)) and 85% (Ni(2+)). (iii) The most remarkable observation of this study is that the shift of the NH(2) group from C6 to C2 facilitates very significantly macrochelate formation of a PO(3)(2-)-coordinated M(2+) with N7 due to the removal of steric hindrance in the M(PME2AP) complexes. However, any M(2+) interaction with N3 is completely suppressed, thus leading to significantly different coordination patterns than those observed previously with the antivirally active PMEA(2-) species.


2-Aminopurine/chemistry , Adenine/analogs & derivatives , Antiviral Agents/chemistry , Coordination Complexes/chemistry , Metals/chemistry , Organophosphonates/chemistry , Adenine/chemistry , Isomerism , Oxygen/chemistry
17.
Acc Chem Res ; 43(7): 974-84, 2010 Jul 20.
Article En | MEDLINE | ID: mdl-20235593

The three-dimensional architecture and function of nucleic acids strongly depend on the presence of metal ions, among other factors. Given the negative charge of the phosphate-sugar backbone, positively charged species, mostly metal ions, are necessary for compensation. However, these ions also allow and induce folding of complicated RNA structures. Furthermore, metal ions bind to specific sites, stabilizing local motifs and positioning themselves correctly to aid (or even enable) a catalytic mechanism, as, for example, in ribozymes. Many nucleic acids thereby exhibit large differences in folding and activity depending not only on the concentration but also on the kind of metal ion involved. As a consequence, understanding the role of metal ions in nucleic acids requires knowing not only the exact positioning and coordination sphere of each specifically bound metal ion but also its intrinsic site affinity. However, the quantification of metal ion affinities toward certain sites in a single-stranded (though folded) nucleic acid is a demanding task, and few experimental data exist. In this Account, we present a new tool for estimating the binding affinity of a given metal ion, based on its ligating sites within the nucleic acid. To this end, we have summarized the available affinity constants of Mg(2+), Ca(2+), Mn(2+), Cu(2+), Zn(2+), Cd(2+), and Pb(2+) for binding to nucleobase residues, as well as to mono- and dinucleotides. We have also estimated for these ions the stability constants for coordinating the phosphodiester bridge. In this way, stability increments for each ligand site are obtained, and a clear selectivity of the ligating atoms, as well as their discrimination by different metal ions, can thus be recognized. On the basis of these data, we propose a concept that allows one to estimate the intrinsic stabilities of nucleic acid-binding pockets for these metal ions. For example, the presence of a phosphate group has a much larger influence on the overall affinity of Mg(2+), Ca(2+), or Mn(2+) compared with, for example, that of Cd(2+) or Zn(2+). In the case of Cd(2+) and Zn(2+), the guanine N7 position is the strongest intrinsic binding site. By adding up the individual increments like building blocks, one derives an estimate not only for the overall stability of a given coordination sphere but also for the most stable complex if an excess of ligating atoms is available in a binding pocket saturating the coordination sphere of the metal ion. Hence, this empirical concept of adding up known intrinsic stabilities, like building blocks, to an estimated overall stability will help in understanding the accelerating or inhibiting effects of different metal ions in ribozymes and DNAzymes.


DNA, Single-Stranded/chemistry , Metals/chemistry , RNA/chemistry , Binding Sites , Hydrogen-Ion Concentration , Phosphates/chemistry , Ribosomes/chemistry
18.
Chem Soc Rev ; 38(8): 2465-94, 2009 Aug.
Article En | MEDLINE | ID: mdl-19623361

The four acidity constants of threefold protonated xanthosine 5'-monophosphate, H(3)(XMP)(+), reveal that in the physiological pH range around 7.5 (X - H x MP)(3-) strongly dominates and not XMP(2-) as commonly given in textbooks and often applied in research papers. Therefore, this nucleotide, which participates in many metabolic processes, should be addressed as xanthosinate 5'-monophosphate as is stated in this critical review. Micro acidity constant schemes allow quantification of intrinsic site basicities. In 9-methylxanthine nucleobase deprotonation occurs to more than 99% at (N3)H, whereas for xanthosine it is estimated that about 30% are (N1)H deprotonated and for (X - H x MP)(3-) it is suggested that (N1)H deprotonation is further favored, especially in macrochelates where the phosphate-coordinated M(2+) interacts with N7. The formation degree of these macrochelates in the (X - H x MP x M)(-) species of Co(2+), Ni(2+), Cu(2+), Zn(2+) or Cd(2+) amounts to 90% or more. In the monoprotonated (M x X - H x MP x H)(+/-) complexes, M(2+) is located at the N7/[(C6)O] unit as the primary binding site and it forms macrochelates with the P(O)(2)(OH)(-) group to about 65% for nearly all metal ions considered (i.e., including Ba(2+), Sr(2+), Ca(2+), Mg(2+)); this indicates outer-sphere binding to P(O)(2)(OH)(-). Finally, a new method quantifying the chelate effect is applied to the M(X - H x MP)(-) species, stabilities and structures of mixed-ligand complexes are considered, and the stability constants for several M(X - H x DP)(2-) and M(X - H x TP)(3-) complexes are estimated (112 references).


Metals/chemistry , Nucleotides/chemistry , Ribonucleotides/chemistry , Hydrogen-Ion Concentration , Xanthine
19.
Chemistry ; 14(32): 10036-46, 2008.
Article En | MEDLINE | ID: mdl-18803205

5- and 6-Uracilmethylphosphonate (5Umpa(2-) and 6Umpa(2-)) as acyclic nucleotide analogues are in the focus of anticancer and antiviral research. Connected metabolic reactions involve metal ions; therefore, we determined the stability constants of M(Umpa) complexes (M(2+)=Mg(2+), Ca(2+), Mn(2+), Co(2+), Cu(2+), Zn(2+), or Cd(2+)). However, the coordination chemistry of these Umpa species is also of interest in its own right, for example, the phosphonate-coordinated M(2+) interacts with (C4)O to form seven-membered chelates with 5Umpa(2-), thus leading to intramolecular equilibria between open (op) and closed (cl) isomers. No such interaction occurs with 6Umpa(2-). In both M(Umpa) series deprotonation of the uracil residue leads to the formation of M(Umpa-H)(-) complexes at higher pH values. Their stability was evaluated by taking into account the fact that the uracilate residue can bind metal ions to give M(2)(Umpa-H)(+) species. This has led to two further important insights: 1) In M(6Umpa-H)-cl the H(+) is released from (N1)H, giving rise to six-membered chelates (degrees of formation of ca. 90 to 99.9 % with Mn(2+), Co(2+), Cu(2+), Zn(2+), or Cd(2+)). 2) In M(5Umpa-H)$-cl the (N3)H is deprotonated, leading to a higher stability of the seven-membered chelates involving (C4)O (even Mg(2+) and Ca(2+) chelates are formed up to approximately 50 %). In both instances the M(Umpa-H)-op species led to the formation of M(2)(Umpa-H)(+) complexes that have one M(2+) at the phosphonate and one at the (N3)(-) (plus carbonyl) site; this proves that nucleotides can bind metal ions independently at the phosphate and the nucleobase residues. X-ray structural analyses of 6Umpa derivatives show that in diesters the phosphonate group is turned away from the uracil residue, whereas in H(2)(6Umpa) the orientation is such that upon deprotonation in aqueous solution a strong hydrogen bond is formed between (N1)H and PO(3) (2-); replacement of the hydro gen with M(2+) gives the M(6Umpa-H)-cl chelates mentioned.


Antineoplastic Agents/chemistry , Esters/chemistry , Uracil/analogs & derivatives , Crystallography, X-Ray , Drug Stability , Models, Molecular , Thermodynamics , Uracil/chemistry , Water/chemistry
20.
J Biol Inorg Chem ; 13(5): 663-74, 2008 Jun.
Article En | MEDLINE | ID: mdl-18309523

The thionucleoside 2-thiocytidine (C2S) occurs in nature in transfer RNAs; it receives attention in diverse fields like drug research and nanotechnology. By potentiometric pH titrations we measured the acidity constants of H(C2S)(+) and the stability constants of the M(C2S)(2+) and M(C2S-H)(+) complexes (M(2+) = Zn(2+), Cd(2+)), and we compared these results with those obtained previously for its parent nucleoside, cytidine (Cyd). Replacement of the (C2)=O unit by (C2)=S facilitates the release of the proton from (N3)H(+) in H(C2S)(+) (pK (a) = 3.44) somewhat, compared with H(Cyd)(+) (pK (a) = 4.24). This moderate effect of about 0.8 pK units contrasts with the strong acidification of about 4 pK units of the (C4)NH(2) group in C2S (pK (a) = 12.65) compared with Cyd (pK (a) approximately 16.7); the reason for this result is that the amino-thione tautomer, which dominates for the neutral C2S molecule, is transformed upon deprotonation into the imino-thioate form with the negative charge largely located on the sulfur. In the M(C2S)(2+) complexes the (C2)S group is the primary binding site rather than N3 as is the case in the M(Cyd)(2+) complexes, though owing to chelate formation N3 is to some extent still involved in metal ion binding. Similarly, in the Zn(C2S-H)(+) and Cd(C2S-H)(+) complexes the main metal ion binding site is the (C2)S(-) unit (formation degree above 99.99% compared with that of N3). However, again a large degree of chelate formation with N3 must be surmised for the M(C2S-H)(+) species in accord with previous solid-state studies of related ligands. Upon metal ion binding, the deprotonation of the (C4)NH(2) group (pK (a) = 12.65) is dramatically acidified (pK (a) approximately 3), confirming the very high stability of the M(C2S-H)(+) complexes. To conclude, the hydrogen-bonding and metal ion complex forming capabilities of C2S differ strongly from those of its parent Cyd; this must have consequences for the properties of those RNAs which contain this thionucleoside.


Cytidine/analogs & derivatives , Metals/chemistry , Acids , Cadmium/chemistry , Cytidine/chemistry , Hydrogen-Ion Concentration , Potentiometry , Solutions , Water , Zinc/chemistry
...