Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters










Publication year range
1.
Metabolomics ; 19(7): 65, 2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37418094

ABSTRACT

INTRODUCTION: Absolute quantification of individual metabolites in complex biological samples is crucial in targeted metabolomic profiling. OBJECTIVES: An inter-laboratory test was performed to evaluate the impact of the NMR software, peak-area determination method (integration vs. deconvolution) and operator on quantification trueness and precision. METHODS: A synthetic urine containing 32 compounds was prepared. One site prepared the urine and calibration samples, and performed NMR acquisition. NMR spectra were acquired with two pulse sequences including water suppression used in routine analyses. The pre-processed spectra were sent to the other sites where each operator quantified the metabolites using internal referencing or external calibration, and his/her favourite in-house, open-access or commercial NMR tool. RESULTS: For 1D NMR measurements with solvent presaturation during the recovery delay (zgpr), 20 metabolites were successfully quantified by all processing strategies. Some metabolites could not be quantified by some methods. For internal referencing with TSP, only one half of the metabolites were quantified with a trueness below 5%. With peak integration and external calibration, about 90% of the metabolites were quantified with a trueness below 5%. The NMRProcFlow integration module allowed the quantification of several additional metabolites. The number of quantified metabolites and quantification trueness improved for some metabolites with deconvolution tools. Trueness and precision were not significantly different between zgpr- and NOESYpr-based spectra for about 70% of the variables. CONCLUSION: External calibration performed better than TSP internal referencing. Inter-laboratory tests are useful when choosing to better rationalize the choice of quantification tools for NMR-based metabolomic profiling and confirm the value of spectra deconvolution tools.


Subject(s)
Body Fluids , Metabolomics , Female , Male , Humans , Metabolomics/methods , Workflow , Magnetic Resonance Spectroscopy/methods , Magnetic Resonance Imaging , Body Fluids/chemistry
2.
Anal Bioanal Chem ; 413(25): 6379-6392, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34498104

ABSTRACT

Trying to answer the intriguing and fundamental question related to chiral induction/amplification at the origin of homochirality in Nature: "Is there a relationship between enantiomeric and isotopic fractionation of carbon 13 in chiral molecules?" is a difficult but stimulating challenge. Although isotropic 13C-PSIA NMR is a promising tool for the determination of (13C/12C) ratios capable of providing key 13C isotopic data for understanding the reaction mechanisms of biological processes or artificial transformations, this method does not provide access to any enantiomeric 13C isotopic data unless mirror-image isomers are first physically separated. Interestingly, 13C spectral enantiodiscriminations can be potentially performed in situ in the presence of enantiopure entities as chiral-europium complexes or chiral liquid crystals (CLCs). In this work, we explored for the first time the capabilities of the anisotropic 13C-{1H} NMR using PBLG-based lyotropic CLCs as enantiodiscriminating media in the context of the enantiomeric position-specific 13C isotope fractionation (EPSIF), within the requested precision of the order of the permil. As enantiomeric NMR signals are discriminated on the basis of a difference of 13C residual chemical shift anisotropy (13C-RCSA) prior to being deconvoluted, analysis of enantiomeric mixtures becomes possible. The analytical potential of this approach when using poly-γ-benzyl-L-glutamate (PBLG) is presented, and the preliminary quantitative results on small model chiral molecules obtained at 17.5 T with a cryogenic NMR probe are reported and discussed. A promising analytical approach based on anisotropic irm-13C-NMR spectrometry to potentially reveal the natural 13C/12C isotopic enantiofractionation effects in organic chiral molecules is proposed and discussed.

3.
Talanta ; 213: 120819, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32200922

ABSTRACT

2,4,6-trinitrotoluene (TNT) is a molecule which is easily identified with current instrumental techniques but it is generally impossible to distinguish between sources of the same substance (TNT). To overcome this difficulty, we present a multi stable isotope approach using isotope ratio monitoring by mass spectrometry (irm-MS) and Nuclear Magnetic Resonance spectrometry (irm-NMR). In the one hand, irm-MS provides bulk isotopic composition at natural abundance in 13C and 15N. The range of variation between samples is rather small particularly for 13C. In the other hand, irm-13C NMR and irm-15N NMR enable the determination of positional intramolecular 13C/12C ratios (δ13Ci) and 15N/14N ratios (δ15Ni) with high precision that lead to larger variation between samples. The present work reports an application of the recent methodology using irm-15N NMR to determine position-specific 15N isotope content of TNT. The interest of this methodology is compared to irm-13C NMR and irm-MS (13C and 15N) in terms of TNT samples discrimination. Thanks to the use of irm-NMR the results show a unique isotopic fingerprint for each TNT which enable origin discrimination between the samples without ambiguity.

4.
Drug Test Anal ; 12(4): 449-457, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31828934

ABSTRACT

In the battle against the illicit drugs market, methodologies have been developed by forensic laboratories to address the determination of the origin and dismantlement of the trafficking route for various target molecules such as heroin and cocaine. These drug profiling methods are not straightforward, especially when the target molecules are synthetic and very pure, resulting in poorly informative impurity profiles, e.g. new psychoactive substances and cutting agents. A tool based on the determination of intramolecular isotopic profiles has been developed to provide origin discrimination with a new way to profile seized cutting agents and heroin samples. Whereas stable isotope analyses by mass spectrometry give the bulk isotopic composition, nuclear magnetic resonance gives direct access to the position-specific isotope content at natural abundance. This report shows how both 13 C NMR spectrometry and 13 C, 15 N MS might provide complementary and valuable information to link seized caffeine and paracetamol to their origin. Here, isotopic ratio monitoring by 13 C NMR (irm-13 C NMR) offers additional benefits over irm-MS in its capability to determine a detailed isotopic profile, leading to a better method to distinguish different caffeine and paracetamol batches.


Subject(s)
Analgesics, Opioid/chemistry , Heroin/chemistry , Illicit Drugs/chemistry , Acetaminophen/analysis , Caffeine/analysis , Carbon Isotopes/analysis , Drug Trafficking , Magnetic Resonance Spectroscopy/methods , Mass Spectrometry
5.
Magn Reson Chem ; 57(12): 1136-1142, 2019 12.
Article in English | MEDLINE | ID: mdl-31222922

ABSTRACT

The position-specific 15 N isotope content in organic molecules, at natural abundance, is for the first time determined by using a quantitative methodology based on 15 N Nuclear Magnetic Resonance (NMR) spectrometry. 15 N NMR spectra are obtained by using an adiabatic "Full-Spectrum" INEPT sequence in order to make possible 15 N NMR experiments with a high signal-to-noise ratio (>500), to reach a precision with a standard deviation below 1‰ (0.1%). This level of precision is required for observing small changes in 15 N content associated to 15 N isotope effects. As an illustration, the measurement of an isotopic enrichment factor ε for each 15 N isotopomer is presented for 1-methylimidazole induced during a separation process on a silica column. The precision expressed as the long-term repeatability of the methodology is good enough to evaluate small changes in the 15 N isotope contents for a given isotopomer. As observed for 13 C, inverse and normal 15 N isotope effects occur concomitantly, giving access to new information on the origin of the 15 N isotope effects, not detectable by other techniques such as isotope ratio measured by Mass Spectrometry for which bulk (average) values are obtained.

6.
Anal Chem ; 90(14): 8692-8699, 2018 07 17.
Article in English | MEDLINE | ID: mdl-29911856

ABSTRACT

For the last ten years, quantitative isotope ratio monitoring 13C NMR (irm-13C NMR) has been successfully tested and proven as an efficient tool for the determination of position-specific 13C/12C ratios. Several applications in different domains have shown the interest in this technique. In the context of origin assignment, the possibility to track the distribution network of illicit drugs or cutting agents is of prime importance. However irm-13C NMR still suffers from a relative lack of sensitivity limiting its dissemination among control laboratories. Improvements were proposed to reduce experiment time by using the INEPT sequence ("Insensitive Nuclei Enhanced by Polarization Transfer") based on polarization transfer from highly sensitive 1H to less sensitive 13C. Several applications based on the use of the one bond scalar coupling between 1H and 13C (1 JCH) have shown the potential of this methodology in terms of short experimental duration. However, the isotopic information given by quaternary carbons was lost. The aim of this study is to extend this approach by using short- and long-range coupling (1 JCH, 2 JCH, and 3 JCH) in order to have access to all 13C/12C position-specific ratios, i.e., acquisition of the full spectrum (FS-INEPT). It is shown that this innovative tool provides both sensitivity gain-thanks to the long-range polarization transfer-and appropriate repeatability. The relative isotopic profiles allowed the classification of two cutting agents, caffeine and paracetamol (acetaminophen), according to their origin, as it was previously observed with "classical" irm-13C NMR but consuming much less sample and/or reducing the experimental time.

7.
J Magn Reson ; 289: 18-25, 2018 04.
Article in English | MEDLINE | ID: mdl-29448130

ABSTRACT

Isotope ratio monitoring by 13C NMR spectrometry (irm-13C NMR) provides the complete 13C intramolecular position-specific composition at natural abundance. It represents a powerful tool to track the (bio)chemical pathway which has led to the synthesis of targeted molecules, since it allows Position-specific Isotope Analysis (PSIA). Due to the very small composition range (which represents the range of variation of the isotopic composition of a given nuclei) of 13C natural abundance values (50‰), irm-13C NMR requires a 1‰ accuracy and thus highly quantitative analysis by 13C NMR. Until now, the conventional strategy to determine the position-specific abundance xi relies on the combination of irm-MS (isotopic ratio monitoring Mass Spectrometry) and 13C quantitative NMR. However this approach presents a serious drawback since it relies on two different techniques and requires to measure separately the signal of all the carbons of the analyzed compound, which is not always possible. To circumvent this constraint, we recently proposed a new methodology to perform 13C isotopic analysis using an internal reference method and relying on NMR only. The method combines a highly quantitative 1H NMR pulse sequence (named DWET) with a 13C isotopic NMR measurement. However, the recently published DWET sequence is unsuited for samples with short T1, which forms a serious limitation for irm-13C NMR experiments where a relaxing agent is added. In this context, we suggest two variants of the DWET called Multi-WET and Profiled-WET, developed and optimized to reach the same accuracy of 1‰ with a better immunity towards T1 variations. Their performance is evaluated on the determination of the 13C isotopic profile of vanillin. Both pulse sequences show a 1‰ accuracy with an increased robustness to pulse miscalibrations compared to the initial DWET method. This constitutes a major advance in the context of irm-13C NMR since it is now possible to perform isotopic analysis with high relaxing agent concentrations, leading to a strong reduction of the overall experiment time.


Subject(s)
Carbon Isotopes/chemistry , Hydrogen/chemistry , Proton Magnetic Resonance Spectroscopy/methods , Acetone/chemistry , Algorithms , Radio Waves , Reference Standards , Reproducibility of Results , Workflow
8.
Food Chem ; 245: 717-723, 2018 Apr 15.
Article in English | MEDLINE | ID: mdl-29287432

ABSTRACT

In a previous work, we optimized and used a fast adiabatic 13C-INEPT (Insensitive Nuclei Enhanced by Polarization Transfer) experiment for the isotopomic analysis of olive oil samples, which allowed us quantifying individual fatty acids within triacylglycerols through multivariate linear regression models. The goal of this study was to validate these models and to evaluate the power of 13C-INEPT in the authentication of olive oils relative to gas chromatography (GC) and 1H NMR. In this respect, a new set of olive oil samples was analyzed by these three techniques. The analytical variables thus obtained as well as their corresponding long-term repeatability were compared. As a result, the reliability of the fatty acid quantification models was proven and the best classification of olive oils according to the altitude of the olive grove and to the morphological aspect (color) of the olives was achieved by means of 13C-INEPT.


Subject(s)
Carbon-13 Magnetic Resonance Spectroscopy/methods , Chromatography, Gas/methods , Fatty Acids/analysis , Olive Oil/analysis , Proton Magnetic Resonance Spectroscopy/methods , Carbon Isotopes/analysis , Discriminant Analysis , Fatty Acids/chemistry , Food Analysis/methods , Lebanon , Olea/chemistry , Olea/growth & development , Olive Oil/chemistry , Reproducibility of Results , Triglycerides/chemistry
9.
Anal Bioanal Chem ; 409(1): 307-315, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27761615

ABSTRACT

Triacylglycerols, which are quasi-universal components of food matrices, consist of complex mixtures of molecules. Their site-specific 13C content, their fatty acid profile, and their position on the glycerol moiety may significantly vary with the geographical, botanical, or animal origin of the sample. Such variables are valuable tracers for food authentication issues. The main objective of this work was to develop a new method based on a rapid and precise 13C-NMR spectroscopy (using a polarization transfer technique) coupled with multivariate linear regression analyses in order to quantify the whole set of individual fatty acids within triacylglycerols. In this respect, olive oil samples were analyzed by means of both adiabatic 13C-INEPT sequence and gas chromatography (GC). For each fatty acid within the studied matrix and for squalene as well, a multivariate prediction model was constructed using the deconvoluted peak areas of 13C-INEPT spectra as predictors, and the data obtained by GC as response variables. This 13C-NMR-based strategy, tested on olive oil, could serve as an alternative to the gas chromatographic quantification of individual fatty acids in other matrices, while providing additional compositional and isotopic information. Graphical abstract A strategy based on the multivariate linear regression of variables obtained by a rapid 13C-NMR technique was developed for the quantification of individual fatty acids within triacylglycerol matrices. The conceived strategy was tested on olive oil.


Subject(s)
Carbon-13 Magnetic Resonance Spectroscopy/methods , Fatty Acids/analysis , Olive Oil/chemistry , Triglycerides/chemistry , Chromatography, Gas , Multivariate Analysis
10.
J Org Chem ; 81(22): 10742-10758, 2016 11 18.
Article in English | MEDLINE | ID: mdl-27766864

ABSTRACT

An original and efficient stereocontrolled synthesis of ribonucleosidic homo- and heterodimers has been achieved from inexpensive d-xylose. This successful strategy involved the sequential introduction of nucleobases, using two stereocontrolled N-glycosidation reactions, from a common two-furanoside amide-linked scaffold offering the possibility of obtaining any given base sequence. The pertinence of this approach is illustrated through the preparation of the homodimers UU-34 and TT-35 in 18 steps with an excellent overall yield of more than 10% from d-xylose, while the heterodimer route led to UT-39 in 19 steps with around 10% overall yield.

11.
J Biol Chem ; 291(32): 16620-9, 2016 08 05.
Article in English | MEDLINE | ID: mdl-27288405

ABSTRACT

During the biosynthesis of natural products, isotopic fractionation occurs due to the selectivity of enzymes for the heavier or lighter isotopomers. As only some of the positions in the molecule are implicated in a given reaction mechanism, position-specific fractionation occurs, leading to a non-statistical distribution of isotopes. This can be accessed by isotope ratio monitoring (13)C NMR spectrometry. The solanaceous alkaloids S-(-)-nicotine and hyoscyamine (atropine) are related in having a common intermediate, but downstream enzymatic steps diverge, providing a relevant test case to: (a) elucidate the isotopic affiliation between carbon atoms in the alkaloids and those in the precursors; (b) obtain information about the kinetic isotope effects of as yet undescribed enzymes, thus to make predictions as to their possible mechanism(s). We show that the position-specific (13)C/(12)C ratios in the different moieties of these compounds can satisfactorily be related to their known precursors and to the known kinetic isotope effects of enzymes involved in their biosynthesis, or to similar reaction mechanisms. Thus, the pathway to the common intermediate, N-methyl-Δ(1)-pyrrolinium, is seen to introduce similar isotope distribution patterns in the two alkaloids independent of plant species, whereas the remaining atoms of each target compound, which are of different origins, reflect their specific metabolic ancestry. We further demonstrate that the measured (13)C distribution pattern can be used to deduce aspects of the reaction mechanism of enzymes still to be identified.


Subject(s)
Nicotiana/metabolism , Nicotine/biosynthesis , Tropanes/metabolism , Carbon Radioisotopes/chemistry , Nicotine/chemistry , Nicotiana/chemistry , Tropanes/chemistry
12.
Talanta ; 156-157: 239-244, 2016 Aug 15.
Article in English | MEDLINE | ID: mdl-27260459

ABSTRACT

An optimized HSQC sequence was tested and applied to triacylglycerol matrices to determine their isotopic and metabolomic profiles. Spectral aliasing and non-uniform sampling approaches were used to decrease the experimental time and to improve the resolution, respectively. An excellent long-term repeatability of signal integrals was achieved enabling to perform isotopic measurements. Thirty-two commercial vegetable oils were analyzed by this methodology. The results show that this method can be used to classify oil samples according to their geographical and botanical origins.


Subject(s)
Carbon-13 Magnetic Resonance Spectroscopy/methods , Plant Oils/analysis , Triglycerides/chemistry , Vegetables/chemistry , Carbon-13 Magnetic Resonance Spectroscopy/economics , Plant Oils/classification , Time Factors
13.
Planta Med ; 82(11-12): 967-72, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27224268

ABSTRACT

The seeds of Carapa procera are exploited extensively in West African ethnopharmacy for the treatment of several pathologies, including inflammation. They also are effective as insect antifeedants and as a mosquito repellent. With the aim of identifying bioactive principles, an ethyl acetate extract of the defatted seeds was made and fractionated. Two principle compounds were isolated. One of these, 5,6-dehydro-7-deacetoxy-7-oxogedunin (1), while known from another genus of the Meliaceae, is newly identified from the genus Carapa and its X-ray structure is described for the first time. In addition, 1 displayed strong anti-clonogenic activity at 10 µM. The other compound, mexicanolide (2), is known from this species and showed neither cytotoxicity nor anti-clonogenicity. These differences in efficacy are discussed in relation to known structure-activity relationships of limonoids.


Subject(s)
Antineoplastic Agents, Phytogenic/isolation & purification , Limonins/isolation & purification , Meliaceae/chemistry , Plant Extracts/isolation & purification , Triterpenes/isolation & purification , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Breast Neoplasms , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Female , Humans , Limonins/chemistry , Limonins/pharmacology , Molecular Structure , Plant Extracts/chemistry , Plant Extracts/pharmacology , Seeds/chemistry , Triterpenes/chemistry , Triterpenes/pharmacology
14.
Org Lett ; 18(7): 1582-5, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-27003243

ABSTRACT

Small push-pull molecules were synthesized in high yields by connecting a N-methyl or N-phenyl substituted thieno[2,3-b]indole electron-donating block directly to a 2,2-dicyanovinyl or (1-(dicyanomethylene)-3-oxo-1-inden-2-ylidene)methyl electron-withdrawing group. The effects of the N-substitution on thieno[2,3-b]indole and the nature of the electron-accepting group on the electrochemical, optical, and charge-transport properties were investigated by cyclic voltammetry, UV-vis spectroscopy, and the space-charge-limited current method, respectively. These results, together with the 1% power conversion efficiency of a bilayer solar cell prepared with the smallest compound of the series, show the potential of thieno[2,3-b]indole for organic electronics.

15.
Rapid Commun Mass Spectrom ; 29(5): 456-60, 2015 Mar 15.
Article in English | MEDLINE | ID: mdl-26349468

ABSTRACT

RATIONALE: Electrochemistry (EC) coupled to mass spectrometry (MS) has been used to study different phase-I reactions. Despite of the versatility of EC/MS, the effect of the nature of the supporting electrolyte on the formation of oxidation products has seldom been discussed during EC/MS experiments. Here, we present a comparison of two different supporting electrolytes and their effect on the identification of unstable intermediate oxidation species is discussed. METHODS: The oxidation of acebutolol was performed with a coulometric cell in the presence of two supporting electrolytes namely ammonium acetate and lithium acetate. Ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC/QTOFMS) using a binary gradient (water/acetonitrile) with positive electrospray ionization was used to identify the oxidation products in the presence and absence of glutathione. Chemical structure elucidations of the oxidation products were performed by high-resolution mass spectrometry (HRMS) and were also supported by nuclear magnetic resonance (NMR) measurements. RESULTS: From the electrochemical study and HRMS measurements, we demonstrate that the quinoneimide species resulting from the oxidative hydrolyses of acebutolol gives a benzimidazole ring product in the presence of ammonium acetate. Through the example of the oxidation of acebutolol, a correlation between the supporting electrolyte nature and oxidation product formation was established. The obtained results were supported by quantum mechanical calculations. CONCLUSIONS: We present here evidence of the side reactions induced by the presence of ammonia as supporting electrolyte during EC/MS measurements. Acebutolol was used as a model to postulate an uncommon and unexpected side reaction leading to benzimidazole ring formation. The findings may help to understand the identification of the intermediate species in the oxidative degradation process.

16.
Chemistry ; 21(32): 11378-86, 2015 Aug 03.
Article in English | MEDLINE | ID: mdl-26119100

ABSTRACT

Polysubstituted butenolides were obtained in good to high yields from α-bromoesters derived from propargyl alcohols by a one-pot reaction involving the radical cyclization of α-bromo aluminium acetals, followed by the oxidation of the resulting cyclic aluminium acetals in an Oppenauer-type process and migration of the exocyclic C=C bond into the α,ß-position. Comparison with the direct cyclization of α-bromoesters at high temperature and under high dilution conditions is described. Deuterium-labelling experiments allowed us to uncover "invisible" 1,5-hydrogen atom transfers (1,5-HATs) that occur during these cyclization processes, together with the consequences of the latter in the epimerization of stereogenic centres. Compared to the classical approach, the cyclization of aluminium acetals proved to be highly chemoselective and its efficiency was illustrated by the short total syntheses of optically enriched γ-butenolides isolated from Plagiomnium undulatum and from Kyrtuhrix maculans.

17.
Proc Natl Acad Sci U S A ; 112(27): 8296-301, 2015 Jul 07.
Article in English | MEDLINE | ID: mdl-26106160

ABSTRACT

Tramadol, previously only known as a synthetic analgesic, has now been found in the bark and wood of roots of the African medicinal tree Nauclea latifolia. At present, no direct evidence is available as to the biosynthetic pathway of its unusual skeleton. To provide guidance as to possible biosynthetic precursors, we have adopted a novel approach of retro-biosynthesis based on the position-specific distribution of isotopes in the extracted compound. Relatively recent developments in isotope ratio monitoring by (13)C NMR spectrometry make possible the measurement of the nonstatistical position-specific natural abundance distribution of (13)C (δ(13)Ci) within the molecule with better than 1‰ precision. Very substantial variation in the (13)C positional distribution is found: between δ(13)Ci = -11 and -53‰. Distribution is not random and it is argued that the pattern observed can substantially be interpreted in relation to known causes of isotope fractionation in natural products. Thus, a plausible biosynthetic scheme based on sound biosynthetic principals of precursor-substrate relationships can be proposed. In addition, data obtained from the (18)O/(16)O ratios in the oxygen atoms of the compound add support to the deductions made from the carbon isotope analysis. This paper shows how the use of (13)C NMR at natural abundance can help with proposing a biosynthetic route to compounds newly found in nature or those difficult to tackle by conventional means.


Subject(s)
Biosynthetic Pathways , Isotope Labeling/methods , Magnetic Resonance Spectroscopy/methods , Tramadol/metabolism , Carbon/metabolism , Carbon Isotopes/metabolism , Mass Spectrometry , Molecular Structure , Oxygen/metabolism , Oxygen Isotopes/metabolism , Plant Bark/chemistry , Plant Roots/chemistry , Rubiaceae/chemistry , Tramadol/chemistry , Tramadol/isolation & purification , Wood/chemistry
18.
Anal Chim Acta ; 846: 1-7, 2014 Oct 10.
Article in English | MEDLINE | ID: mdl-25220137

ABSTRACT

Intramolecular (13)C composition gives access to new information on the (bio) synthetic history of a given molecule. Isotopic (13)C NMR spectrometry provides a general tool for measuring the position-specific (13)C content. As an emerging technique, some aspects of its performance are not yet fully delineated. This paper reports on (i) the conditions required to obtain satisfactory trueness and precision for the determination of the internal (13)C distribution, and (ii) an approach to determining the "absolute" position-specific (13)C content. In relation to (i), a precision of <1% can be obtained whatever the molecule on any spectrometer, once quantitative conditions are met, in particular appropriate proton decoupling efficiency. This performance is a prerequisite to the measurement of isotope fractionation either on the transformed or residual compound when a chemical reaction or process is being studied. The study of the trueness has revealed that the response of the spectrometer depends on the (13)C frequency range of the studied molecule, i.e. the chemical shift range. The "absolute value" and, therefore, the trueness of the (13)C NMR measurements has been assessed on acetic acid and by comparison to the results obtained on the fragments from COOH and CH3 by isotopic mass spectrometry coupled to a pyrolysis device (GC-Py-irm-MS), this technique being the reference method for acetic acid. Of the two NMR spectrometers used in this work, one gave values that corresponded to those obtained by GC-Py-irm-MS (thus, the "true" value) while the other showed a bias, which was dependent to the range covered by the resonance frequencies of the molecule. Therefore, the former can be used directly for studying isotope affiliations, while the latter can only be used directly for comparative data, for example in authenticity studies, but can also be used to obtain the true values by applying appropriate correction factors. The present study assesses several key protocol steps required to enable the determination of position-specific (13)C content by isotopic (13)C NMR, irrespective of the NMR spectrometer: parameters to be adjusted, performance test using [1,2-(13)C2]acetic acid, generation of correction factors.


Subject(s)
Carbon Isotopes/analysis , Magnetic Resonance Spectroscopy/methods , Acetic Acid/analysis , Calibration
19.
J Org Chem ; 79(20): 9754-61, 2014 Oct 17.
Article in English | MEDLINE | ID: mdl-25260182

ABSTRACT

Synthesis of the originally proposed 8-oxo-8H-acenaphtho[1,2-b]pyrrol-9-carbonitrile led to a structural revision, and the product has now been identified as unknown compound 1-oxo-1H-phenalene-2,3-dicarbonitrile. The structural assignment was corroborated by detailed NMR studies and unambiguously confirmed by X-ray diffraction. A mechanism is proposed to explain the formation of this original heterocyclic scaffold. In addition, some new chemical transformations involving this compound are presented.


Subject(s)
Heterocyclic Compounds/chemical synthesis , Nitriles/chemistry , Nitriles/chemical synthesis , Pyrroles/chemistry , Pyrroles/chemical synthesis , X-Ray Diffraction , Heterocyclic Compounds/chemistry , Magnetic Resonance Spectroscopy , Molecular Structure
20.
Anal Chim Acta ; 788: 108-13, 2013 Jul 25.
Article in English | MEDLINE | ID: mdl-23845488

ABSTRACT

Isotopic (13)C NMR spectrometry, which is able to measure intra-molecular (13)C composition, is of emerging demand because of the new information provided by the (13)C site-specific content of a given molecule. A systematic evaluation of instrumental behaviour is of importance to envisage isotopic (13)C NMR as a routine tool. This paper describes the first collaborative study of intra-molecular (13)C composition by NMR. The main goals of the ring test were to establish intra- and inter-variability of the spectrometer response. Eight instruments with different configuration were retained for the exercise on the basis of a qualification test. Reproducibility at the natural abundance of isotopic (13)C NMR was then assessed on vanillin from three different origins associated with specific δ (13)Ci profiles. The standard deviation was, on average, between 0.9 and 1.2‰ for intra-variability. The highest standard deviation for inter-variability was 2.1‰. This is significantly higher than the internal precision but could be considered good in respect of a first ring test on a new analytical method. The standard deviation of δ (13)Ci in vanillin was not homogeneous over the eight carbons, with no trend either for the carbon position or for the configuration of the spectrometer. However, since the repeatability for each instrument was satisfactory, correction factors for each carbon in vanillin could be calculated to harmonize the results.


Subject(s)
Carbon Isotopes/chemistry , Magnetic Resonance Spectroscopy/instrumentation , Magnetic Resonance Spectroscopy/methods , Benzaldehydes/chemistry , Laboratories , Pilot Projects , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...