Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 367: 121980, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39079492

ABSTRACT

Finding appropriate mechanism of sharing protected area (PA) benefit with local communities is a critical policy question in biodiversity conservation. The Buffer Zone (BZ) program, practiced in several countries, involves placing partial restrictions on land use in peripherical areas while sharing a portion of PA revenue with the communities therein. However, the effectiveness of this program in promoting conservation and development is unknown. Evidence from key informant interviews of 41 individuals representing a diverse group of stakeholders associated with Nepal's 26-year-old BZ program, imply that the institutional platform the BZ program provides to stakeholders, rather than the shared revenue itself, creates bigger impacts in integrated conservation and development. Findings also suggest that effectiveness of such programs may be further enhanced by accommodating some autonomy for local BZ institutions to meet their local needs; shifting the focus from development to conservation education, wildlife damage mitigation, and relief to wildlife victims; and leveraging BZ funds with other sources to create a bigger impact.


Subject(s)
Biodiversity , Conservation of Natural Resources , Nepal , Humans
2.
PeerJ ; 12: e17497, 2024.
Article in English | MEDLINE | ID: mdl-38832039

ABSTRACT

Human-wildlife conflict (HWC) is a pressing issue worldwide but varies by species over time and place. One of the most prevalent forms of HWC in the mid-hills of Nepal is human-common-leopard conflict (HLC). Leopard attacks, especially in forested areas, can severely impact villagers and their livestock. Information on HLC in the Gorkha district was scarce, thus making it an ideal location to identify high-risk zones and landscape variables associated with such events. Registered cases were collected and reviewed from the Division Forest Office (DFO) during 2019-2021. Claims from DFO records were confirmed with herders and villagers via eight focus group discussions. To enhance modeling success, researchers identified a total of 163 leopard attack locations on livestock, ensuring a minimum distance of at least 100 meters between locations. Using maximum entropy (MaxEnt) and considering 13 environmental variables, we mapped common leopard attack risk zones. True Skill Statistics (TSS) and area under receiver-operator curve (AUC) were used to evaluate and validate the Output. Furthermore, 10 replications, 1,000 maximum iterations, and 1000 background points were employed during modeling. The average AUC value for the model, which was 0.726 ± 0.021, revealed good accuracy. The model performed well, as indicated by a TSS value of 0.61 ± 0.03. Of the total research area (27.92 km2), about 74% was designated as a low-risk area, 19% as a medium-risk area, and 7% as a high-risk area. Of the 13 environmental variables, distance to water (25.2%) was the most significant predictor of risk, followed by distance to road (16.2%) and elevation (10.7%). According to response curves, the risk of common leopard is highest in the areas between 1.5 to 2 km distances from the water sources, followed by the closest distance from a road and an elevation of 700 to 800 m. Results suggest that managers and local governments should employ intervention strategies immediately to safeguard rural livelihoods in high-risk areas. Improvements include better design of livestock corrals, insurance, and total compensation of livestock losses. Settlements near roads and water sources should improve the design and construction of pens and cages to prevent livestock loss. More studies on the characteristics of victims are suggested to enhance understanding of common leopard attacks, in addition to landscape variables. Such information can be helpful in formulating the best management practices.


Subject(s)
Panthera , Animals , Nepal , Humans , Livestock
3.
Animals (Basel) ; 12(19)2022 Oct 05.
Article in English | MEDLINE | ID: mdl-36230422

ABSTRACT

Forest management practice plays a critical role in conserving biodiversity. However, there are few studies on how forest management practice affects bird communities. Here, we compare the effectiveness of the Panchase Protection Forest (PPF; protected forest with government administration) and the Tibrekot Community Forest (TCF; community forest with community forest users' group administration) in hosting bird diversity in the mid-hills of Nepal. We examined 96 point count stations during summer and winter in 2019 and recorded 160 species of birds with three globally threatened vultures (red-headed vulture Sarcogyps calvus, slender-billed vulture Gyps tenuirostris, and white-rumped vulture Gyps bengalensis). Forest management practice, season, and elevation all influenced the richness and abundance of birds. The diversity, richness, and abundance of birds and the most common feeding guilds (insectivore, omnivore, and carnivore) were higher in TCF than in PPF; however, globally threatened species were only recorded in PPF. We also recorded a higher bird species turnover (beta diversity) in TCF than in PPF. Our study indicates that community-managed forests can also provide quality habitats similar to those of protected forests managed by the government, and provide refuge to various bird species and guilds. However, we recommend more comparative studies in other tropical and sub-tropical areas to understand how different forest management practices influence bird diversity.

SELECTION OF CITATIONS
SEARCH DETAIL