Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Exp Mol Med ; 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39349829

ABSTRACT

Cancer immunotherapy aims to initiate or amplify immune responses that eliminate cancer cells and create immune memory to prevent relapse. Immune checkpoint inhibitors (ICIs), which target coinhibitory receptors on immune effector cells, such as CTLA-4 and PD-(L)1, have made significant strides in cancer treatment. However, they still face challenges in achieving widespread and durable responses. The effectiveness of anticancer immunity, which is determined by the interplay of coinhibitory and costimulatory signals in tumor-infiltrating immune cells, highlights the potential of costimulatory receptors as key targets for immunotherapy. This review explores our current understanding of the functions of CD2 and CD226, placing a special emphasis on their potential as novel agonist targets for cancer immunotherapy. CD2 and CD226, which are present mainly on T and NK cells, serve important functions in cell adhesion and recognition. These molecules are now recognized for their costimulatory benefits, particularly in the context of overcoming T-cell exhaustion and boosting antitumor responses. The importance of CD226, especially in anti-TIGIT therapy, along with the CD2‒CD58 axis in overcoming resistance to ICI or chimeric antigen receptor (CAR) T-cell therapies provides valuable insights into advancing beyond the current barriers of cancer immunotherapy, underscoring their promise as targets for novel agonist therapy.

2.
J Exp Clin Cancer Res ; 42(1): 272, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37858248

ABSTRACT

BACKGROUND: Immunotherapy has significantly advanced cancer treatments, but many patients do not respond to it, partly due to immunosuppressive mechanisms used by tumor cells. These cells employ immunosuppressive ligands to evade detection and elimination by the immune system. Therefore, the discovery and characterization of novel immunosuppressive ligands that facilitate immune evasion are crucial for developing more potent anti-cancer therapies. METHODS: We conducted gain-of-function screens using a CRISPRa (CRISPR activation) library that covered the entire human transmembrane sub-genome to identify surface molecules capable of hindering NK-mediated cytotoxicity. The immunosuppressive role and mechanism of MUC21 were validated using NK and T cell mediated cytotoxicity assays. Bioinformatics tools were employed to assess the clinical implications of mucin-21 (MUC21) in cancer cell immunity. RESULTS: Our genetic screens revealed that MUC21 expression on cancer cell surfaces inhibits both the cytotoxic activity of NK cells and antibody-dependent cellular cytotoxicity, but not affecting complement-dependent cytotoxicity. Additionally, MUC21 expression hinders T cell activation by impeding antigen recognition, thereby diminishing the effectiveness of the immune checkpoint inhibitor, anti-PD-L1. Moreover, MUC21 expression suppress the antitumor function of both CAR-T cells and CAR-NK cells. Mechanistically, MUC21 facilitates immune evasion by creating steric hindrance, preventing interactions between cancer and immune cells. Bioinformatics analysis revealed elevated MUC21 expression in lung cancer, which correlated with reduced infiltration and activation of cytotoxic immune cells. Intriguingly, MUC21 expression was higher in non-small cell lung cancer (NSCLC) tumors that were non-responsive to anti-PD-(L)1 treatment compared to responsive tumors. CONCLUSIONS: These findings indicate that surface MUC21 serves as a potent immunosuppressive ligand, shielding cancer cells from NK and CD8+T cell attacks. This suggests that inhibiting MUC21 could be a promising strategy to improve cancer immunotherapy.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , B7-H1 Antigen/metabolism , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Line, Tumor , Clustered Regularly Interspaced Short Palindromic Repeats , Immunity, Cellular , Killer Cells, Natural , Lung Neoplasms/genetics , Lung Neoplasms/metabolism
3.
Biomedicines ; 10(2)2022 Jan 27.
Article in English | MEDLINE | ID: mdl-35203508

ABSTRACT

Immune checkpoint inhibitor therapy has proven efficacy in a subset of colon cancer patients featuring a deficient DNA mismatch repair system or a high microsatellite instability profile. However, there is high demand for more effective biomarkers to expand the colon cancer population responding to ICI therapy. PBK/TOPK, a serine/threonine kinase, plays a role in cell cycle regulation and mitotic progression. Here, we investigated the correlation between PBK/TOPK expression and tumor immunity and its prognostic value in colon cancer. Based on large-scale bioinformatics analysis, we discovered that elevated PBK/TOPK expression predicted a favorable outcome in patients with colon cancer and was positively associated with immune infiltration levels of CD8+ T cells, CD4+ T cells, natural killer cells, and M1 macrophages. In contrast, a negative correlation was found between PBK/TOPK expression and immune suppressor cells, including regulatory T cells and M2 macrophages. Furthermore, the expression of PBK/TOPK was correlated with the expression of T-cell cytotoxicity genes in colon cancer. Additionally, high PBK/TOPK expression was associated with mutations in DNA damage repair genes, and thus with increased tumor mutation and neoantigen burden. These findings suggest that PBK/TOPK may serve as a prognostic and predictive biomarker for immunotherapy in colon cancer.

SELECTION OF CITATIONS
SEARCH DETAIL