Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
1.
Cancers (Basel) ; 15(23)2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38067370

ABSTRACT

Specificity Proteins/Krüppel-like Factors (SP/KLF family) are a conserved family of transcriptional regulators. These proteins share three highly conserved, contiguous zinc fingers in their carboxy-terminus, requisite for binding to cis elements in DNA. Each SP/KLF protein has unique primary sequence within its amino-terminal and carboxy-terminal regions, and it is these regions which interact with co-activators, co-repressors, and chromatin-modifying proteins to support the transcriptional activation and repression of target genes. Krüppel-like Factor 9 (KLF9) and Krüppel-like Factor 13 (KLF13) are two of the smallest members of the SP/KLF family, are paralogous, emerged early in metazoan evolution, and are highly conserved. Paradoxically, while most similar in primary sequence, KLF9 and KLF13 display many distinct roles in target cells. In this article, we summarize the work that has identified the roles of KLF9 (and to a lesser degree KLF13) in tumor suppression or promotion via unique effects on differentiation, pro- and anti-inflammatory pathways, oxidative stress, and tumor immune cell infiltration. We also highlight the great diversity of miRNAs, lncRNAs, and circular RNAs which provide mechanisms for the ubiquitous tumor-specific suppression of KLF9 mRNA and protein. Elucidation of KLF9 and KLF13 in cancer biology is likely to provide new inroads to the understanding of oncogenesis and its prevention and treatments.

2.
Int J Mol Sci ; 24(7)2023 Apr 01.
Article in English | MEDLINE | ID: mdl-37047583

ABSTRACT

Malic Enzyme 1 (ME1) supports lipogenesis, cholesterol synthesis, and cellular redox potential by catalyzing the decarboxylation of L-malate to pyruvate, and the concomitant reduction of NADP to NADPH. We examined the contribution of ME1 to the development of obesity by provision of an obesogenic diet to C57BL/6 wild type (WT) and MOD-1 (lack ME1 protein) female mice. Adiposity, serum hormone levels, and adipose, mammary gland, liver, and small intestine gene expression patterns were compared between experimental groups after 10 weeks on a diet. Relative to WT female mice, MOD-1 female mice exhibited lower body weights and less adiposity; decreased concentrations of insulin, leptin, and estrogen; higher concentrations of adiponectin and progesterone; smaller-sized mammary gland adipocytes; and reduced hepatosteatosis. MOD-1 mice had diminished expression of Lep gene in abdominal fat; Lep, Pparg, Klf9, and Acaca genes in mammary glands; Pparg and Cdkn1a genes in liver; and Tlr9 and Ffar3 genes in the small intestine. By contrast, liver expression of Cdkn2a and Lepr genes was augmented in MOD-1, relative to WT mice. Results document an integrative role for ME1 in development of female obesity, suggest novel linkages with specific pathways/genes, and further support the therapeutic targeting of ME1 for obesity, diabetes, and fatty liver disease.


Subject(s)
Leptin , Non-alcoholic Fatty Liver Disease , Mice , Female , Animals , Leptin/metabolism , Insulin/metabolism , Adiposity/genetics , Mice, Obese , PPAR gamma/metabolism , Mice, Inbred C57BL , Obesity/genetics , Obesity/metabolism , Liver/metabolism , Insulin, Regular, Human , Non-alcoholic Fatty Liver Disease/metabolism , Diet, High-Fat
3.
Cancers (Basel) ; 14(7)2022 Mar 29.
Article in English | MEDLINE | ID: mdl-35406507

ABSTRACT

Obesity, oxidative stress, and inflammation are risk factors for hepatocellular carcinoma (HCC). We examined, in mice, the effects of Krüppel-like factor 9 (KLF9) knockout on: adiposity, hepatic and systemic oxidative stress, and hepatic expression of pro-inflammatory and NOX/DUOX family genes, in a high-fat diet (HFD) context. Male and female Klf9+/+ (wild type, WT) and Klf9-/- (knockout, KO) mice were fed HFD (beginning at age 35 days) for 12 weeks, after which liver and adipose tissues were obtained, and serum adiponectin and leptin levels, liver fat content, and markers of oxidative stress evaluated. Klf9-/- mice of either sex did not exhibit significant alterations in weight gain, adipocyte size, adipokine levels, or liver fat content when compared to WT counterparts. However, Klf9-/- mice of both sexes had increased liver weight/size (hepatomegaly). This was accompanied by increased hepatic oxidative stress as indicated by decreased GSH/GSSG ratio and increased homocysteine, 3-nitrotyrosine, 3-chlorotyrosine, and 4HNE content. Decreased GSH to GSSG ratio and a trend toward increased homocysteine levels were observed in the corresponding Klf9-/- mouse serum. Gene expression analysis showed a heightened pro-inflammatory state in livers from Klf9-/- mice. KLF9 suppresses hepatic oxidative stress and inflammation, thus identifying potential mechanisms for KLF9 suppression of HCC and perhaps cancers of other tissues.

4.
Front Physiol ; 12: 702674, 2021.
Article in English | MEDLINE | ID: mdl-34712146

ABSTRACT

Endometriosis is a chronic, estrogen-dependent gynecologic disorder that affects reproductive-aged women and to a lesser extent, post-menopausal women on hormone therapy. The condition is associated with systemic and local immune dysfunctions. While its underlying mechanisms remain poorly understood, endometriosis has a genetic component and propensity for the disease is subject to environmental, nutritional, and lifestyle influences. Previously, we showed that high-fat diet (HFD) increased ectopic lesion numbers, concurrent with systemic and peritoneal changes in inflammatory and oxidative stress status, in immunocompetent recipient mice ip administered with endometrial fragments null for Krüppel-like factor 9 gene. Herein, we determined whether HFD modifies lesion parameters, when recipient peritoneal environment is challenged with ectopic wild-type (WT) endometrial fragments, the latter simulating retrograde menstruation common in women during the menstrual period. WT endometrium-recipient mice fed HFD (45% kcal from fat) showed reduced lesion incidence, numbers, and volumes, in the absence of changes in systemic ovarian steroid hormone and insulin levels, relative to those fed the control diet (CD, 17% kcal from fat). Lesions from HFD- and CD-fed recipients demonstrated comparable gene expression for steroid hormone receptors (Esr and Pgr) and cytokines (Il-6, Il-8, and CxCL4) and similar levels of DNA oxidative biomarkers. HFD moderately altered serum (3-nitrotyrosine and methionine/homocysteine) and peritoneal (reduced glutathione/oxidized glutathione) pro-oxidative status but had no effect on peritoneal inflammatory (tumor necrosis factor α and tumor necrosis factor receptor 1) mediators. Results indicate that lesion genotype modifies dietary effects on disease establishment and/or progression and if translated, could be important for provision of nutritional guidelines to women with predisposition to, or affected by endometriosis.

5.
J Mol Endocrinol ; 67(4): 173-188, 2021 09 09.
Article in English | MEDLINE | ID: mdl-34382943

ABSTRACT

Epidemiological studies inversely associate BMI with breast cancer risk in premenopausal women, but the pathophysiological linkage remains ill-defined. Despite the documented relevance of the 'local' environment to breast cancer progression and the well-accepted differences in transcriptome and metabolic properties of anatomically distinct fat depots, specific breast adipose contributions to the proliferative potential of non-diseased breast glandular compartment are not fully understood. To address early breast cancer causation in the context of obesity status, we compared the cellular and molecular phenotypes of breast adipose and matched breast glandular tissue from premenopausal non-obese (mean BMI = 27 kg/m2) and obese (mean BMI = 44 kg/m2) women. Breast adipose from obese women showed higher expression levels of adipogenic, pro-inflammatory, and estrogen synthetic genes than from non-obese women. Obese breast glandular tissue displayed lower proliferation and inflammatory status and higher expression of anti-proliferative/pro-senescence biomarkers TP53 and p21 than from non-obese women. Transcript levels for T-cell receptor and co-receptors CD3 and CD4 were higher in breast adipose of obese cohorts, coincident with elevated adipose interleukin 10 (IL10) and FOXP3 gene expression. In human breast epithelial cell lines MCF10A and HMEC, recombinant human IL10 reduced cell viability and CCND1 transcript levels, increased those of TP53 and p21, and promoted (MCF10A) apoptosis. Our findings suggest that breast adipose-associated IL10 may mediate paracrine interactions between non-diseased breast adipose and breast glandular compartments and highlight how breast adipose may program the local inflammatory milieu, partly by recruiting FOXP3+ T regulatory cells, to influence premenopausal breast cancer risk.


Subject(s)
Adipose Tissue/metabolism , Breast/metabolism , Epithelium/metabolism , Interleukin-10/metabolism , Phenotype , Premenopause/metabolism , Adipocytes/immunology , Adipocytes/metabolism , Adiposity , Adult , Biomarkers , Breast/pathology , Breast Neoplasms/etiology , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/surgery , Cytokines/genetics , Cytokines/metabolism , Female , Gene Expression , Gonadal Steroid Hormones/blood , Gonadal Steroid Hormones/metabolism , Humans , Immunohistochemistry , Inflammation Mediators/metabolism , Middle Aged , Models, Biological , Obesity/metabolism , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , T-Lymphocyte Subsets/pathology , Telomere/genetics , Telomere/metabolism , Young Adult
6.
J Mol Endocrinol ; 65(4): R77-R90, 2020 11.
Article in English | MEDLINE | ID: mdl-33064660

ABSTRACT

Malic enzyme 1 (ME1) is a cytosolic protein that catalyzes the conversion of malate to pyruvate while concomitantly generating NADPH from NADP. Early studies identified ME1 as a mediator of intermediary metabolism primarily through its participatory roles in lipid and cholesterol biosynthesis. ME1 was one of the first identified insulin-regulated genes in liver and adipose and is a transcriptional target of thyroxine. Multiple studies have since documented that ME1 is pro-oncogenic in numerous epithelial cancers. In tumor cells, the reduction of ME1 gene expression or the inhibition of its activity resulted in decreases in proliferation, epithelial-to-mesenchymal transition and in vitro migration, and conversely, in promotion of oxidative stress, apoptosis and/or cellular senescence. Here, we integrate recent findings to highlight ME1's role in oncogenesis, provide a rationale for its nexus with metabolic syndrome and diabetes, and raise the prospects of targeting the cytosolic NADPH network to improve therapeutic approaches against multiple cancers.


Subject(s)
Disease Susceptibility , Malate Dehydrogenase/metabolism , Neoplasms/etiology , Neoplasms/metabolism , Animals , Energy Metabolism , Epithelial-Mesenchymal Transition , Humans , Lipid Metabolism , Malate Dehydrogenase/genetics , Neoplasms/pathology , Oxidation-Reduction , Oxidative Stress
7.
Reprod Sci ; 27(1): 267-277, 2020 01.
Article in English | MEDLINE | ID: mdl-32046384

ABSTRACT

Metformin (MET) is increasingly implicated in reducing the incidence of multiple cancer types in patients with diabetes. However, similar effects of MET in non-diabetic women with endometrial cancer (EC) remain unknown. In a pilot study, obese non-diabetic women diagnosed with type 1, grade 1/2 EC, and consenting to participate were randomly assigned to receive MET or no MET (control (CON)) during the pre-surgical window between diagnosis and hysterectomy. Endometrial tumors obtained at surgery (MET, n = 4; CON, n = 4) were analyzed for proliferation (Ki67), apoptosis (TUNEL), and nuclear expression of ERα, PGR, PTEN, and KLF9 proteins in tumor glandular epithelial (GE) and stromal (ST) cells. The percentages of immunopositive cells for PGR and for KLF9 in GE and for PTEN in ST were higher while those for ERα in GE but not ST were lower, in tumors of MET vs. CON patients. The numbers of Ki67- and TUNEL-positive cells in tumor GE and ST did not differ between groups. In human Ishikawa endometrial cancer cells, MET treatment (60 µM) decreased cell numbers and elicited distinct temporal changes in ESR1, KLF9, PGR, PGR-B, KLF4, DKK1, and other tumor biomarker mRNA levels. In the context of reduced KLF9 expression (by siRNA targeting), MET rapidly amplified PGR, PGR-B, and KLF4 transcript levels. Our findings suggest that MET acts directly in EC cells to modify steroid receptor expression and signaling network and may constitute a preventative strategy against EC in high-risk non-diabetic women.


Subject(s)
Cell Proliferation/drug effects , Endometrial Neoplasms/metabolism , Hypoglycemic Agents/pharmacology , Metformin/pharmacology , Apoptosis/drug effects , Biomarkers, Tumor , Endometrial Neoplasms/pathology , Endometrial Neoplasms/surgery , Endometrium , Estrogen Receptor alpha/metabolism , Female , Humans , Kruppel-Like Factor 4 , Kruppel-Like Transcription Factors/metabolism , Middle Aged , PTEN Phosphohydrolase/metabolism , Pilot Projects , Preoperative Period , Receptors, Progesterone/metabolism
8.
Environ Sci Process Impacts ; 22(3): 583-594, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-31894794

ABSTRACT

Trichloroethylene (TCE) is an environmental contaminant associated with immune-mediated inflammatory disorders and neurotoxicity. Based on known negative effects of developmental overnutrition on neurodevelopment, we hypothesized that developmental exposure to high fat diet (HFD) consisting of 40% kcal fat would enhance neurotoxicity of low-level (6 µg per kg per day) TCE exposure in offspring over either stressor alone. Male offspring were evaluated at ∼6 weeks of age after exposure beginning 4 weeks preconception in the dams until weaning. TCE, whether used as a single exposure or together with HFD, appeared to be more robust than HFD alone in altering one-carbon metabolites involved in glutathione redox homeostasis and methylation capacity. In contrast, opposing effects of expression of key enzymes related to DNA methylation related to HFD and TCE exposure were observed. The mice generated unique patterns of anti-brain antibodies detected by western blotting attributable to both TCE and HFD. Taken together, developmental exposure to TCE and/or HFD appear to act in complex ways to alter brain biomarkers in offspring.


Subject(s)
Epigenesis, Genetic , Trichloroethylene , Animals , Biomarkers , Cerebellum , Diet, High-Fat , Female , Male , Mice , Pregnancy
9.
Sci Rep ; 8(1): 14268, 2018 09 24.
Article in English | MEDLINE | ID: mdl-30250042

ABSTRACT

Cytosolic Malic Enzyme (ME1) provides reduced NADP for anabolism and maintenance of redox status. To examine the role of ME1 in tumor genesis of the gastrointestinal tract, we crossed mice having augmented intestinal epithelial expression of ME1 (ME1-Tg mice) with ApcMin/+ mice to obtain male ApcMin/+/ME1-Tg mice. ME1 protein levels were significantly greater within gut epithelium and adenomas of male ApcMin/+/ME1-Tg than ApcMin/+ mice. Male ApcMin/+/ME1-Tg mice had larger and greater numbers of adenomas in the small intestine (jejunum and ileum) than male ApcMin/+ mice. Male ApcMin/+/ME1-Tg mice exhibited greater small intestine crypt depth and villus length in non-adenoma regions, correspondent with increased KLF9 protein abundance in crypts and lamina propria. Small intestines of male ApcMin/+/ME1-Tg mice also had enhanced levels of Sp5 mRNA, suggesting Wnt/ß-catenin pathway activation. A small molecule inhibitor of ME1 suppressed growth of human CRC cells in vitro, but had little effect on normal rat intestinal epithelial cells. Targeting of ME1 may add to the armentarium of therapies for cancers of the gastrointestinal tract.


Subject(s)
Adenomatous Polyposis Coli Protein/genetics , Carcinogenesis/genetics , Colonic Neoplasms/genetics , Gastrointestinal Tract/metabolism , Malate Dehydrogenase/genetics , Animals , Cell Proliferation/genetics , Colonic Neoplasms/pathology , DNA-Binding Proteins/genetics , Epithelial Cells/metabolism , Epithelial Cells/pathology , Gastrointestinal Tract/pathology , Gene Expression Regulation, Neoplastic/genetics , Humans , Intestinal Mucosa , Malate Dehydrogenase/antagonists & inhibitors , Mice , Oncogenes , Rats , Transcription Factors/genetics
10.
J Endocr Soc ; 2(7): 765-778, 2018 Jul 01.
Article in English | MEDLINE | ID: mdl-30151432

ABSTRACT

CONTEXT: Progesterone (P) resistance is a hallmark of endometriosis, but the underlying mechanism(s) for loss of P sensitivity leading to lesion establishment remains poorly understood. OBJECTIVE: To evaluate the association between Notch-1 signaling activation and P resistance in the progression of endometriosis. DESIGN: Case control study; archived formalin-fixed, paraffin-embedded tissues. SETTING: University hospitals (United States, Taiwan). PATIENTS: Women with endometriosis; human endometrial stromal cell line (HESC). INTERVENTION: Eutopic endometria (EU) and ectopic lesions (ECs) were collected from surgically diagnosed patients. Archived tissue sections of EU and ECs were identified. HESCs were treated with N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester (DAPT) and valproic acid (VPA) to, respectively, suppress and induce Notch-1 activation. OUTCOME MEASURES: Tissues were analyzed for Notch Intra-Cellular Domain 1 (NICD1) and progesterone receptor (PGR) protein expression by immunohistochemistry and for transcript levels of NICD1 target genes HES1, PGR, and PGR-B by quantitative reverse transcription polymerase chain reaction. DAPT- or VPA-treated HESCs with and without P cotreatment were evaluated for cell numbers and for PGR, HES1, and PGR target gene DKK1 transcript levels. RESULTS: Nuclear-localized stromal NICD1 protein levels were inversely associated with those of total PGR in EU and ECs. Stromal ECs displayed higher HES1 and lower total PGR and PGR-B transcript levels than EU. In HESCs, DAPT reduction of NICD1 decreased cell numbers and increased PGR transcript and nuclear PGR protein levels and, with P cotreatment, maintained P sensitivity. Conversely, VPA induction of NICD1 decreased PGR transcript levels and, with P cotreatment, abrogated P-induced DKK1 and maintained HES1 transcript levels. CONCLUSIONS: Aberrant Notch-1 activation is associated with decreased PGR that contributes to P resistance in endometriosis.

11.
Toxicol Sci ; 164(1): 313-327, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29669109

ABSTRACT

Trichloroethylene (TCE) is a widespread environmental pollutant associated with immunotoxicity and autoimmune disease. Previous studies showed that mice exposed from gestation through early life demonstrated CD4+ T cell alterations and autoimmune hepatitis. Determining the role of one environmental risk factor for any disease is complicated by the presence of other stressors. Based on its known effects, we hypothesized that developmental overnutrition in the form of a moderately high-fat diet (HFD) consisting of 40% kcal fat would exacerbate the immunotoxicity and autoimmune-promoting effects of low-level (<10 µg/kg/day) TCE in autoimmune-prone MRL+/+ mice over either stressor alone. When female offspring were evaluated at 27 weeks of age we found that a continuous exposure beginning at 4 weeks preconception in the dams until 10 weeks of age in offspring that TCE and HFD promoted unique effects that were often antagonistic. For a number of adiposity endpoints, TCE significantly reversed the expected effects of HFD on expression of genes involved in fatty acid synthesis/insulin resistance, as well as mean pathology scores of steatosis. Although none of the animals developed pathological signs of autoimmune hepatitis, the mice generated unique patterns of antiliver antibodies detected by western blotting attributable to TCE exposure. A majority of cytokines in liver, gut, and splenic CD4+ T cells were significantly altered by TCE, but not HFD. Levels of bacterial populations in the intestinal ileum were also altered by TCE exposure rather than HFD. Thus, in contrast to our expectations this coexposure did not promote synergistic effects.


Subject(s)
Diet, High-Fat/adverse effects , Environmental Pollutants/toxicity , Hepatitis, Autoimmune/etiology , Lipogenesis/drug effects , Prenatal Exposure Delayed Effects/etiology , Trichloroethylene/toxicity , Animals , Biomarkers/analysis , Cytokines/metabolism , Female , Hepatitis, Autoimmune/metabolism , Inflammation , Maternal Exposure , Mice, Inbred MRL lpr , Pregnancy , Prenatal Exposure Delayed Effects/chemically induced , Prenatal Exposure Delayed Effects/immunology
12.
J Nutr ; 146(12): 2491-2496, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27798348

ABSTRACT

BACKGROUND: We previously reported that dietary intake of shiitake mushroom (SM; Lentinus edodes) decreased serum concentrations of polar lipids in male rats. OBJECTIVE: This study evaluated the dietary effects of SM on serum cholesterol-related and serum antioxidant indexes in rats of both sexes. METHODS: Sprague-Dawley rats [38 dams and their offspring (20 males and 20 females/diet)] were fed diets containing 0 (control), 1%, 4%, or 10% (wt:wt) SM powder from gestation day 4 through to postnatal day (PND) 126. Biochemical indexes were monitored during the midgrowth phase (PNDs 50-66). RESULTS: The food consumption by offspring fed the control diet and diets supplemented with SM was not different when measured on PND 65. However, the 4% and 10% SM diets resulted in male rats with 7% lower body weights than those of the other 2 groups on PND 66. SM consumption dose-dependently decreased the concentrations of lipidemia-related factors in sera, irrespective of sex. At PND 50, serum concentrations of total cholesterol, HDL cholesterol, and non-HDL cholesterol in SM-fed male and female rats were generally lower (3-27%) than those in the corresponding control groups. Consumption of the 10% SM diet resulted in significantly decreased (55%) serum triglyceride concentrations relative to the control groups for both sexes. The 10% SM diet elicited a 62% reduction of serum leptin concentrations in females but not in males, and this same diet increased serum insulin (137%) and decreased serum glucose (15%) in males compared with controls. Serum lipophilic antioxidant capacity in males and females fed SM diets was generally lower (31-86%) than that in the control groups. CONCLUSION: SM decreased the concentrations of lipidemia-related factors in rat sera irrespective of sex. The SM-elicited reduction of lipophilic antioxidant capacity irrespective of sex may reflect a lower pro-oxidative state and, hence, improved metabolic profile.


Subject(s)
Antioxidants/metabolism , Lipids/blood , Maternal Nutritional Physiological Phenomena , Shiitake Mushrooms , Animal Nutritional Physiological Phenomena , Animals , Diet , Dose-Response Relationship, Drug , Female , Hyperlipidemias/metabolism , Insulin/blood , Leptin/blood , Male , Pregnancy , Prenatal Exposure Delayed Effects , Random Allocation , Rats , Rats, Sprague-Dawley
13.
Endocr Relat Cancer ; 23(9): 677-90, 2016 09.
Article in English | MEDLINE | ID: mdl-27402613

ABSTRACT

The emerging links between breast cancer and metabolic dysfunctions brought forth by the obesity pandemic predict a disproportionate early disease onset in successive generations. Moreover, sensitivity to chemotherapeutic agents may be influenced by the patient's metabolic status that affects the disease outcome. Maternal metabolic stress as a determinant of drug response in progeny is not well defined. Here, we evaluated mammary tumor response to doxorubicin in female mouse mammary tumor virus-Wnt1 transgenic offspring exposed to a metabolically compromised environment imposed by maternal high-fat diet. Control progeny were from dams consuming diets with regular fat content. Maternal high-fat diet exposure increased tumor incidence and reduced tumor latency but did not affect tumor volume response to doxorubicin, compared with control diet exposure. However, doxorubicin-treated tumors from high-fat-diet-exposed offspring demonstrated higher proliferation status (Ki-67), mammary stem cell-associated gene expression (Notch1, Aldh1) and basal stem cell-like (CD29(hi)CD24(+)) epithelial subpopulation frequencies, than tumors from control diet progeny. Notably, all epithelial subpopulations (CD29(hi)CD24(+), CD29(lo)CD24(+), CD29(hi)CD24(+)Thy1(+)) in tumors from high-fat-diet-exposed offspring were refractory to doxorubicin. Further, sera from high-fat-diet-exposed offspring promoted sphere formation of mouse mammary tumor epithelial cells and of human MCF7 cells. Untargeted metabolomics analyses identified higher levels of kynurenine and 2-hydroxyglutarate in plasma of high-fat diet than control diet offspring. Kynurenine/doxorubicin co-treatment of MCF7 cells enhanced the ability to form mammosphere and decreased apoptosis, relative to doxorubicin-only-treated cells. Maternal metabolic dysfunctions during pregnancy and lactation may be targeted to reduce breast cancer risk and improve early drug response in progeny, and may inform clinical management of disease.


Subject(s)
Antineoplastic Agents/therapeutic use , Diet, High-Fat , Doxorubicin/therapeutic use , Mammary Neoplasms, Experimental/drug therapy , Animals , Drug Resistance, Neoplasm , Epithelial Cells/pathology , Female , Humans , MCF-7 Cells , Mammary Neoplasms, Experimental/pathology , Mice , Mice, Transgenic , Oxidative Stress , Tumor Burden/drug effects , Wnt1 Protein/genetics
14.
Endocrinology ; 157(7): 2870-82, 2016 07.
Article in English | MEDLINE | ID: mdl-27175969

ABSTRACT

Endometriosis is a benign gynecological condition that causes considerable morbidity due to associated infertility, debilitating pelvic pain and inflammatory dysfunctions. Diet is a highly modifiable risk factor for many chronic diseases, but its contribution to endometriosis has not been extensively investigated, due partly to the paradoxical inverse association between obesity and disease incidence. Nevertheless, chronic exposure to dietary high-fat intake has been linked to greater systemic inflammation and oxidative stress, both features of women with endometriosis. Here, we evaluated the effects of a high-fat diet (HFD) (45% fat kcal) on endometriosis progression using an immunocompetent mouse model where ectopic lesion incidence was induced in wild-type recipients by ip administration of endometrial fragments from transcription factor Krüppel-like factor 9-null donor mice. We show that HFD significantly increased ectopic lesion numbers in recipient mice with no significant weight gain and modifications in systemic ovarian steroid hormone and insulin levels, relative to control diet-fed (17% fat kcal) mice. HFD promotion of lesion establishment was associated with reductions in stromal estrogen receptor 1 isoform and progesterone receptor expression, increased F4/80-positive macrophage infiltration, higher stromal but not glandular epithelial proliferation, and enhanced expression of proinflammatory and prooxidative stress pathway genes. Lesion-bearing HFD-fed mice also displayed higher peritoneal fluid TNFα and elevated local and systemic redox status than control diet-fed counterparts. Our results suggest that HFD intake exacerbates endometriosis outcome in the absence of ovarian dysfunction and insulin resistance in mice and warrants further consideration with respect to clinical management of endometriosis progression and recurrence in nonobese patients.


Subject(s)
Diet, High-Fat , Endometriosis/metabolism , Inflammation/metabolism , Insulin Resistance/physiology , Animals , Apoptosis/physiology , Cell Proliferation/physiology , Disease Models, Animal , Disease Progression , Endometriosis/pathology , Female , Inflammation/pathology , Mice , Oxidation-Reduction
15.
Genes Nutr ; 10(6): 49, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26506839

ABSTRACT

Colorectal cancer (CRC) is a disease whose genesis may include metabolic dysregulation. Cancer stem cells are attractive targets for therapeutic interventions since their aberrant expansion may underlie tumor initiation, progression, and recurrence. To investigate the actions of metabolic regulators on cancer stem cell-like cells (CSC) in CRC, we determined the effects of soybean-derived bioactive molecules and the anti-diabetes drug metformin (MET), alone and together, on the growth, survival, and frequency of CSC in human HCT116 cells. Effects of MET (60 µM) and soybean components genistein (Gen, 2 µM), lunasin (Lun, 2 µM), ß-conglycinin (ß-con, 3 µM), and glycinin (Gly, 3 µM) on HCT116 cell proliferation, apoptosis, and mRNA/protein expression and on the frequency of the CSC CD133(+)CD44(+) subpopulation by colonosphere assay and fluorescence-activated cell sorting/flow cytometry were evaluated. MET, Gen, and Lun, individually and together, inhibited HCT116 viability and colonosphere formation and, conversely, enhanced HCT116 apoptosis. Reductions in frequency of the CSC CD133(+)CD44(+) subpopulation with MET, Gen, and Lun were found to be associated with increased PTEN and reduced FASN expression. In cells under a hyperinsulinemic state mimicking metabolic dysregulation and without and with added PTEN-specific inhibitor SF1670, colonosphere formation and frequency of the CD133(+)CD44(+) subpopulation were decreased by MET, Lun and Gen, alone and when combined. Moreover, MET + Lun + Gen co-treatment increased the pro-apoptotic and CD133(+)CD44(+)-inhibitory efficacy of 5-fluorouracil under hyperinsulinemic conditions. Results identify molecular networks shared by MET and bioavailable soy food components, which potentially may be harnessed to increase drug efficacy in diabetic and non-diabetic patients with CRC.

16.
Carcinogenesis ; 36(9): 946-55, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26210742

ABSTRACT

UNLABELLED: Expression of the transcription factor Krüppel-like factor 9 (KLF9) is frequently reduced in colorectal cancers, although a tumor suppressive role has not been established. To determine if KLF9 suppresses intestinal adenoma formation, we generated mice of distinct Klf9 genotypes in the background of the Apc (Min/+) mouse and compared their adenoma burdens at 16 weeks of age. While small intestine adenoma burden remained unchanged among Klf9 genotypes, male and female Apc(Min/+)/Klf9(-/-) and Apc(Min/+)/Klf9(+/-) mice exhibited significantly more colon adenomas than their Apc(Min/+)/Klf9(+/+) counterparts. Microarray analysis showed significant increases in the expression of interferon-induced genes in the colon mucosa of female Apc (Min/+)/Klf9(+/-) and Apc(Min/+)/Klf9(-/-) compared to Apc(Min/+)/Klf9(+/+) mice, prior to overt adenoma occurrence. Gene upregulation was confirmed by qPCR of colon mucosa and by siRNA knockdown of KLF9 in human HT29 colorectal cancer cells. Increases in expression of these genes were further augmented by supplementation with Interferon ß1. Circulating levels of the cytokine, interferon-stimulated gene 15 (ISG15) were increased in Apc(Min/+)/Klf9(+/-) and Apc(Min/+)/Klf9(-/-) mice relative to Apc(Min/+)/Klf9(+/+). Additionally, colon mucosal levels of ISG15 were increased in Apc(Min/+)/Klf9(+/-) mice. Chromatin immunoprecipitation demonstrated KLF9 recruitment to the ISG15 promoter. Lastly, treatment with ISG15 suppressed apoptosis in HT29 cells, in the presence and absence of 5-fluorouracil (5FU). Results show KLF9 to be a haploinsufficient suppressor of colon tumorigenesis in Apc(Min/+) mice in part, by repression of ISG15 and the latter's antiapoptotic function. SUMMARY: Krüppel-like factor 9 (KLF9) is a haploinsufficient tumor suppressor in the ApcMin/+ mouse colon by suppressing expression of ISG15, an apoptosis-inhibiting cytokine.


Subject(s)
Colorectal Neoplasms/genetics , Cytokines/genetics , Kruppel-Like Transcription Factors/genetics , Ubiquitins/genetics , Adenoma/genetics , Adenoma/metabolism , Adenoma/pathology , Animals , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/genetics , Cell Transformation, Neoplastic/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Cytokines/metabolism , Cytokines/pharmacology , Female , Gene Expression Regulation, Neoplastic , HT29 Cells , Haploinsufficiency/genetics , Humans , Interferon-beta/pharmacology , Intestinal Mucosa/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Promoter Regions, Genetic/genetics , RNA Interference , RNA, Small Interfering , Signal Transduction/genetics , Ubiquitins/metabolism , Ubiquitins/pharmacology
17.
Biol Reprod ; 92(6): 140, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25904015

ABSTRACT

Krüppel-like Factor (KLF) 13 and the closely related KLF9 are members of the Sp/KLF family of transcription factors that have collectively emerged as essential regulators of tissue development, differentiation, proliferation, and programmed cell death. Steroid hormone-responsive tissues express multiple KLFs that are linked to progesterone receptor (PGR) and estrogen receptor (ESR) actions either as integrators or as coregulators. Endometriosis is a chronic disease characterized by progesterone resistance and dysregulated estradiol signaling; nevertheless, distinct KLF members' contributions to endometriosis remain largely undefined. We previously demonstrated promotion of ectopic lesion establishment by Klf9 null endometrium in a mouse model of endometriosis. Here we evaluated whether KLF13 loss of expression in endometrial cells may equally contribute to lesion formation. KLF13 transcript levels were lower in the eutopic endometria of women with versus women without endometriosis at menstrual midsecretory phase. In wild-type (WT) mouse recipients intraperitoneally administered WT or Klf13 null endometrial fragments, lesion incidence did not differ with donor genotype. No differences were noted for lesion volume, number, proliferation status, and apoptotic index as well. Klf13 null lesions displayed reduced total PGR and ESR1 (RNA and immunoreactive protein) and altered expression of several PGR and ESR1 target genes, relative to WT lesions. Unlike for Klf9 null lesions, changes in transcript levels for PGR-A, ESR1, and Notch/Hedgehog-associated pathway components were not observed for Klf13 null lesions. Results demonstrate lack of a causative relationship between endometrial KLF13 deficiency and lesion establishment in mice, and they support the broader participation of multiple signaling pathways, besides those mediated by steroid receptors, in the pathology of endometriosis.


Subject(s)
Cell Cycle Proteins/metabolism , Endometriosis/metabolism , Endometrium/metabolism , Kruppel-Like Transcription Factors/metabolism , Receptors, Estrogen/metabolism , Receptors, Progesterone/metabolism , Repressor Proteins/metabolism , Signal Transduction/genetics , Animals , Apoptosis/genetics , Cell Cycle Proteins/genetics , Cell Differentiation/genetics , Disease Models, Animal , Endometriosis/genetics , Endometriosis/pathology , Endometrium/pathology , Estradiol/blood , Female , Humans , Kruppel-Like Transcription Factors/genetics , Mice , Mice, Knockout , Progesterone/blood , Repressor Proteins/genetics
18.
J Clin Endocrinol Metab ; 100(1): 166-74, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25313913

ABSTRACT

CONTEXT: Late-term pregnancy may lead to maternal and neonatal morbidity and mortality. Mice null for the progesterone receptor co-regulator Krüppel-like Factor 9 (KLF9) exhibit delayed parturition and increased incidence of neonatal deaths. OBJECTIVE: Our aim is to evaluate the contribution of myometrial KLF9 to human parturition. DESIGN: Myometrial biopsies were obtained from women with term (>37 to ≤41 wk) and late-term (>41 wk) pregnancies during cesarean delivery and assessed for gene and protein expression. Human myometrial cells transfected with nontargeting or KLF9 small interfering RNAs (siRNA) were treated with the progesterone antagonist RU486 and analyzed for pro-inflammatory chemokine/cytokine gene expression. SETTING: The study took place in a University-affiliated tertiary care hospital and University research laboratory. PATIENTS: Term patients (n = 8) were in spontaneous active labor whereas late-term patients (n = 5) were either in or were induced to active labor, prior to elective cesarean delivery. OUTCOME MEASURES: Steroid hormone receptor, contractility, and inflammation-associated gene expression in myometrial biopsies and in siKLF9-transfected, RU486-treated human myometrial cells was associated with KLF9 expression levels. RESULTS: Myometrium from women with late-term pregnancy showed lower KLF9, total PGR, and PGR-A/PGR-B isoform expression. Transcript levels of select chemokines/cytokines were up- (CSF3, IL1, IL12A, TGFB2) and down- (CCL3, CCL5, CXCL1, CXCL5, IL15) regulated in late-term relative to term myometrium. Knock-down of KLF9 expression in RU486-treated human myometrial cells modified the expression of PGR and labor-associated cytokines, relative to control siRNA-treated cells. CONCLUSIONS: Myometrial KLF9 may contribute to the onset of human parturition through its regulation of PGR expression and inflammatory signaling networks.


Subject(s)
Kruppel-Like Transcription Factors/metabolism , Myometrium/metabolism , Parturition/physiology , Pregnancy, Prolonged/metabolism , Receptors, Progesterone/metabolism , Adult , Cell Line , Female , Gene Expression/drug effects , Hormone Antagonists/pharmacology , Humans , Kruppel-Like Transcription Factors/genetics , Mifepristone/pharmacology , Myometrium/drug effects , Pregnancy , RNA, Small Interfering , Receptors, Progesterone/antagonists & inhibitors , Receptors, Progesterone/genetics , Signal Transduction/drug effects , Signal Transduction/physiology
19.
PLoS One ; 9(11): e113058, 2014.
Article in English | MEDLINE | ID: mdl-25402228

ABSTRACT

The small intestine participates in lipid digestion, metabolism and transport. Cytosolic malic enzyme 1 (ME1) is an enzyme that generates NADPH used in fatty acid and cholesterol biosynthesis. Previous work has correlated liver and adipose ME1 expression with susceptibility to obesity and diabetes; however, the contributions of intestine-expressed ME1 to these conditions are unknown. We generated transgenic (Tg) mice expressing rat ME1 in the gastrointestinal epithelium under the control of the murine villin1 promoter/enhancer. Levels of intestinal ME1 protein (endogenous plus transgene) were greater in Tg than wildtype (WT) littermates. Effects of elevated intestinal ME1 on body weight, circulating insulin, select adipocytokines, blood glucose, and metabolism-related genes were examined. Male Tg mice fed a high-fat (HF) diet gained significantly more body weight than WT male littermates and had heavier livers. ME1-Tg mice had deeper intestinal and colon crypts, a greater intestinal 5-bromodeoxyuridine labeling index, and increased expression of intestinal lipogenic (Fasn, Srebf1) and cholesterol biosynthetic (Hmgcsr, Hmgcs1), genes. The livers from HF diet-fed Tg mice also exhibited an induction of cholesterol and lipogenic pathway genes and altered measures (Irs1, Irs2, Prkce) of insulin sensitivity. Results indicate that gastrointestinal ME1 via its influence on intestinal epithelial proliferation, and lipogenic and cholesterologenic genes may concomitantly impact signaling in liver to modify this tissue's metabolic state. Our work highlights a new mouse model to address the role of intestine-expressed ME1 in whole body metabolism, hepatomegaly, and crypt cell proliferation. Intestinal ME1 may thus constitute a therapeutic target to reduce obesity-associated pathologies.


Subject(s)
Cell Proliferation , Cytosol/enzymology , Gastrointestinal Tract/metabolism , Intestinal Mucosa/metabolism , Intestines/cytology , Lipogenesis/genetics , Liver/metabolism , Malate Dehydrogenase/metabolism , Adiposity/genetics , Animals , Cells, Cultured , Diet, High-Fat , Gastrointestinal Tract/cytology , Gene Expression Regulation , Immunoenzyme Techniques , Insulin Resistance/genetics , Lipid Metabolism/genetics , Liver/cytology , Malate Dehydrogenase/genetics , Male , Mice , Mice, Transgenic , RNA, Messenger/genetics , Rats , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction
20.
Carcinogenesis ; 35(9): 2102-12, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24832086

ABSTRACT

Many adult chronic diseases are thought to be influenced during early life by maternal nutrition; however, the underlying mechanisms remain largely unknown. Obesity-related diseases may be due partly to high fat consumption. Herein, we evaluated mammary tumor risk in female mouse mammary tumor virus-Wnt-1 transgenic (Tg) offspring exposed to high-fat diet (HFD) or control diet (CD) (45% and 17% kcal from fat, respectively) during gestation and lactation, with CD provided to progeny at weaning. In Tg offspring, maternal HFD exposure increased mammary tumor incidence and decreased tumor latency without affecting tumor volume. Tumor risk was associated with higher tumor necrosis factor-α and insulin and altered oxidative stress biomarkers in sera and with early changes in mammary expression of genes linked to tumor promotion [interleukin 6 (Il6)] or inhibition [phosphatase and tensin homolog deleted on chromosome 10 (Pten), B-cell lymphoma 2 (Bcl2)]. Corresponding wild-type progeny exposed to maternal HFD displayed accelerated mammary development, higher mammary adiposity, increased insulin resistance and early changes in Pten, Bcl2 and Il6, than CD-exposed offspring. Dams-fed HFD showed higher serum glucose and oxidative stress biomarkers but comparable adiposity compared with CD-fed counterparts. In human breast cancer MCF-7 cells, sera from maternal HFD-exposed Tg offspring elicited changes in PTEN, BCL2 and IL6 gene expression, mimicking in vivo exposure; increased cell viability and mammosphere formation and induced measures [insulin receptor substrate-1 (IRS-1), IRS-2] of insulin sensitivity. Serum effects on IRS-1 were recapitulated by exogenous insulin and the PTEN-specific inhibitor SF1670. Hyperinsulinemia and PTEN loss-of-function may thus, couple maternal HFD exposure to enhanced insulin sensitivity via increased mammary IRS-1 expression in progeny, to promote breast cancer risk.


Subject(s)
Diet, High-Fat/adverse effects , Mammary Neoplasms, Experimental/etiology , Prenatal Exposure Delayed Effects/etiology , Wnt1 Protein/physiology , Animals , Animals, Suckling , Female , Gene Expression , Gene Expression Regulation, Neoplastic , Humans , Lactation , MCF-7 Cells , Male , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/pathology , Mammary Neoplasms, Experimental/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Oxidative Stress , Phenotype , Pregnancy , Prenatal Exposure Delayed Effects/metabolism , Prenatal Nutritional Physiological Phenomena , Risk Factors , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL