Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 115
Filter
1.
Dalton Trans ; 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39109402

ABSTRACT

Under the gravity of future socio-economic development, the viability of water electrolysis still hinges on the accessibility of stable earth-abundant electrocatalysts and net energy efficiency. This work emphasizes the design and synthesis of two newly developed cobalt(II) complexes, [Co(HL)2(NCS)2] (Comono) and [Co2(L)3(CH3OH)]ClO4 (Codi), with a (N,O)-donor ligand, HL (2-methoxy-6-(((2-methoxyphenyl)imino)methyl)phenol). The study delves into understanding their structural, morphological, magnetic, and charge transport characteristics. Moreover, the study explores the potential of these complexes in catalyzing hydrogen production through heterogeneous electrocatalysis. The X-ray crystal structure of Comono reveals the octahedral geometry of the Co(II) ion, adopting two HL units and two NCS- units. The Codi complex exhibits a doubly-phenoxo-O-bridged (µ1,1) dinuclear complex, forming a typical octahedral geometry for both the Co(II) centres in coupling with three units of L-. Temperature-dependent magnetic susceptibility measurements showed that all of the Co(II) ion in Comono shows a typical paramagnetic behaviour for high spin octahedral Co(II) ions while the Co(II) centres in Codi are coupled with doubly-phenoxo-bridges bearing weak ferromagnetic characteristics at low temperature. Electron transport properties of the Co(II) complex-mediated Schottky device address the superior carrier mobility (µ) for Codi (9.21 × 10-5) over Comono (2.02 × 10-5 m2 v-1 s-1) with respective transit times of 1.70 × 10-9 and 7.77 × 10-9 s. Additionally, electron impedance spectral analysis supports the lower electrical transport resistance of Codi relative to Comono. The heterogeneous electrocatalytic HER activity of Codi and Comono in 0.1 M KOH shows excellent electrocatalytic efficiency in terms of the various electrochemical parameters. Constant potential electrolysis, multi-cycle CVs, and post-HER analysis reveal the pre-catalytic nature of the complexes, which in turn delivers Co3O4 nanoparticles as the active catalysts for efficient hydrogen evolution.

2.
J Agric Food Chem ; 72(31): 17658-17665, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39044391

ABSTRACT

Monitoring of the introduction of unapproved genetically modified (GM) events is required because the approval status of a GM event may differ from country to country. The on-site methods such as loop-mediated isothermal amplification (LAMP) offer a technological answer for the rapid GM detection beyond the laboratories. Real-time LAMP assays detecting one GM target were reported earlier. To increase the efficiency of the assay, a multiplex real-time LAMP simultaneously targeting Figwort Mosaic Virus promoter (P-FMV) that constructs region between the Cauliflower Mosaic Virus 35S promoter and cry1Ac gene (p35S-cry1Ac) and neomycin phosphotransferase II (nptII) marker gene was developed. The assay could detect as low as 0.1% for each GM target within 45 min. To the best of our knowledge, multiplexing in real-time LAMP using the Genie II system with applicability in GM detection has been reported herein for the first time. The developed method provides rapid, on-site, and real-time GM detection in seeds and food products.


Subject(s)
Nucleic Acid Amplification Techniques , Plants, Genetically Modified , Seeds , Nucleic Acid Amplification Techniques/methods , Plants, Genetically Modified/genetics , Seeds/genetics , Seeds/chemistry , Caulimovirus/genetics , Promoter Regions, Genetic , Molecular Diagnostic Techniques
3.
ACS Omega ; 9(23): 25381-25389, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38882167

ABSTRACT

This study aimed to develop a delivery system for the dried aqueous extract of Rubia cordifolia leaves (RCE) that could improve the neuroprotective potential of RCE by improving the bioavailability of the chief chemical constituent rubiadin. Rubiadin, an anthraquinone chemically, is a biomarker phytoconstituent of RCE. Rubiadin is reported to have strong antioxidant and neuroprotective activity but demonstrates poor bioavailability. In order to resolve the problem related to bioavailability, RCE and phospholipids were reacted in disparate ratios of 1:1, 1:2, and 1:3 to prepare phytosome formulations PC1, PC2, and PC3, respectively. The formulation PC2 showed particle size of 289.1 ± 0.21 nm, ζ potential of -6.92 ± 0.10 mV, entrapment efficiency of 72.12%, and in vitro release of rubiadin of 89.42% at pH 7.4 for a period up to 48 h. The oral bioavailability and neuroprotective potential of PC2 and RCE were assessed to evaluate the benefit of PC2 formulation over the crude extract RCE. Formulation PC2 showed a relative bioavailability of 134.14% with a higher neuroprotective potential and significantly (p < 0.05) augmented the nociceptive threshold against neuropathic pain induced by partial sciatic nerve ligation method. Antioxidant enzyme levels and histopathological studies of the sciatic nerves in various treatment groups significantly divulged that PC2 has enough potential to reverse the damaged nerves into a normal state. Finally, it was concluded that encapsulated RCE as a phytosome is a potential carrier system for enhancing the delivery of RCE for the efficient treatment of neuropathic pain.

4.
J Environ Health Sci Eng ; 22(1): 263-269, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38887773

ABSTRACT

Purpose: More than 20 genetically modified (GM) food crops including rice have been approved in many countries. GM rice and derived products have not yet been approved in India so they are considered as unauthorized genetically modified organisms (GMOs) in the country. Therefore it is important to track whether the rice containing food items, available in the marketplace are GMO-free. Methods: A pilot study was conducted to check the GM status of 30 samples of packed rice grains and processed food products with rice as an ingredient, using polymerase chain reaction (PCR) assays targeting Cauliflower Mosaic Virus 35 S promoter (P-35 S), nopaline synthase terminator (T-nos), phosphinothricin-N-acetyltransferase (pat) and cry1Ac gene, which could cover screening for all the globally approved GM rice events. Results: Based on the results, none of the samples tested were found positive for P-35 S, T-nos, pat and cry1Ac. Conclusion: The unauthorized presence of GM rice ingredients was not detected in the samples tested. Such studies may further be conducted for the testing of GM ingredients derived from cereals other than rice in the food products imported from the country where GM events of respective cereal crop are approved, as a part of regulatory requirement.

5.
Microb Pathog ; 193: 106738, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38857710

ABSTRACT

Microbial virulence and biofilm formation stand as a big concern against the goal of achieving a green and sustainable future. Microbial pathogenesis is the process by which the microbes (bacterial, fungal, and viral) cause illness in their respective host organism. 'Nanotechnology' is a state-of-art discipline to address this problem. The use of conventional techniques against microbial proliferation has been challenging against the environment. To tackle this problem, there has been a revolution in this multi-disciplinary field, to address the aspect of bioinspired nanomaterials in the antibiofilm and antimicrobial sector. Bioinspired nanomaterials prove to be a potential antibiofilm and antimicrobial agent as they are non-hazardous to the environment and mostly synthesized using a single-step reduction protocol. They exhibit synergistic effects against bacterial, fungal, and viral pathogens and thereby, control the virulence. In this literature review, we have elucidated the potential of bioinspired nanoparticles as well as nanomaterials as a promising anti-microbial treatment pedagogy and throw light on the advancements in how smart photo-switchable platforms have been designed to exhibit both bacterial releasing as well as bacterial-killing properties. Certain limitations and possible outcomes of these bio-based nanomaterials have been discussed in the hope of achieving a green and sustainable ecosystem.


Subject(s)
Anti-Infective Agents , Bacteria , Biofilms , Nanostructures , Biofilms/drug effects , Biofilms/growth & development , Virulence , Nanostructures/chemistry , Bacteria/drug effects , Bacteria/pathogenicity , Anti-Infective Agents/pharmacology , Fungi/drug effects , Fungi/pathogenicity , Nanotechnology/methods , Nanoparticles/chemistry , Humans , Viruses/drug effects
6.
Cureus ; 16(6): e62749, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38912084

ABSTRACT

Malformations of cortical development (MCD) are a group of disorders affecting the normal development of the human cortex and are significant causes of delay in psychomotor development and epilepsy in children. Lissencephaly (smooth brain) forms a major group of brain malformations. Microtubules help in the migration of neuronal cells. Defect in tubulin gene alpha-tubulin (TUBA), beta-tubulin (TUBB), and gamma-tubulin (TUBG) leads to defective neuronal migration. This group of disorders is termed as "tubulinopathies." The important genes implicated in causing lissencephaly are LIS1, XLIS, and TUBA1A gene. Recently, a mutation in the TUBG1 gene is associated with it. Here, we report a one-and-a-half-year-old girl with global developmental delay, microcephaly, infantile-onset epilepsy, epileptic spasms, dysmorphism, and motor signs. There was no significant birth history. Neuroimaging (MRI) showed a broad thick gyri and a decreased number of sulci suggestive of lissencephaly/pachygyria spectrum. There was dilatation of the ventricles, and no grey matter heterotopia was noted. Sleep EEG showed multifocal epileptiform discharges. The child was treated with multiple anti-seizure medicines (ASMs). A genetic test, whole exome sequencing, was done to determine the etiology of MCD. A heterozygous missense variation in exon 6 of the TUBG1 gene was identified and reported as a "variant of unknown significance." Still, because the genotype matched with the clinical phenotype of the patient, it was considered clinically significant. Therefore, a complete diagnosis of TUBG1 mutation-associated cortical malformation (lissencephaly/pachygyria) with microcephaly and early-onset epilepsy was established. TUBG1 mutation is de novo in most cases, but parental testing is recommended. The parents of such patients need to be counseled about the need for prenatal testing and the risk of the disease to siblings. The overall prognosis in such cases is poor because of refractory seizures, physical limitations, and intellectual disability.

7.
ACS Omega ; 9(24): 25870-25878, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38911721

ABSTRACT

Porous materials are highly explored platforms for fertilizer delivery. Among porous materials, metal-organic frameworks (MOFs) are an important class of coordination polymers in which metal ions and organic electron donors as linkers are assembled to form crystalline structures with stable nanoporosity. Selected amino acids were inherently found to have the capacity to hold the leaf cuticle. Hence, MOF synthesis was attempted in the presence of amino acids, which can act as surface terminators and can assist as hands to hold to the leaf for a controlled nutrient supply. By serendipity, the amino acids were found to act as modulators, resulting in well-stabilized porous MOF structures with iron metal nodes, which are often noted to be unstable. Thus, the composite, i.e., (MOF@aa) MOF modulated with amino acids, has efficient nutrient-feeding ability through the foliar route when compared to the control.

8.
Oral Oncol ; 154: 106857, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38776623

ABSTRACT

OBJECTIVE: To analyze the impact of clinico-pathological prognostic factors on survival in patients with GBC OSCC. To evaluate the association between various clino-pathological and treatment factors influencing the 3-year and 5-year Overall survival (OS), and Disease specific survival (DSS) in patients with lower GBC OSCC. PATIENTS & METHODS: An Institutional Ethical Committee (IEC) approved retrospective chart audit was performed. Biopsy proven squamous cell cancer of gingivobuccal complex (GBC OSCC) patients from 2010 to 2019 who were treated primarily with surgery with or without adjuvant therapy having complete clinicopathological and follow up data were included. Survival outcomes including 2-year, 3-year & 5-year OS, and DSS were calculated and analyzed. A multivariate analysis was performed to identify significant predictor for the survival outcomes. A p-value < 0.05 was considered significant. RESULTS: 183 patients with primary OSCC were identified out of which 83 patients comprised of OSCC of lower GBC. Age (p < 0.001), tumor grade (p = 0.009), pN status (p = 0.002), PNI (p < 0.001), lymph node metastasis (p = 0.002), treatment given (p = 0.02) and adjuvant therapy (p = 0.02) were found as a significant prognostic factor in univariate analysis. CONCLUSION: The OS & DSS of the patients with lower GBC SCC is 78.3%. The 2-year, 3-year, and 5-year OS of the study population was reported to be 95.2%, 87.9%, and 78.8% respectively. PNI & lymph node metastasis were significant prognostic factor for OS with an adjusted hazard ratio 4.91 and 7.75 respectively.


Subject(s)
Carcinoma, Squamous Cell , Humans , Male , Female , Retrospective Studies , Middle Aged , Prognosis , Aged , Carcinoma, Squamous Cell/mortality , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/therapy , Adult , Aged, 80 and over , Mouth Neoplasms/mortality , Mouth Neoplasms/pathology , Mouth Neoplasms/therapy
9.
J Family Med Prim Care ; 13(3): 1073-1078, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38736825

ABSTRACT

Background: Hypothyroidism is the result of impaired production and secretion of thyroid hormones. The cardiovascular system is affected by fluctuations in thyroid hormone levels. Stressful events or stressors can affect the hypothalamic-pituitary-thyroid (HPT) axis and psychological and physiological responses. Stress increases thyroid hormone levels while decreasing TSH levels, which exacerbates autoimmune thyroid disease. Aim: To evaluate the relationship between stress and primary hypothyroidism. Methods: A total of 77 newly diagnosed hypothyroid patients (TSH >5.0 mIU/L) and 77 healthy adults (TSH 0.5-5.0 mIU/L) were enrolled. During a brief general physical examination, the following values were measured: height, weight, blood pressure, pulse, and pulse rate. A brief systemic examination of the cardiovascular system and lungs was also performed to rule out systemic diseases. Heart rate variability (HRV) processing and analysis were performed using Pro LabChart (PowerLab 8Pro) data analysis software from AD Instrument. Results: Mean Avg. RR was significantly higher, RM SSD and pRR50 were significantly lower in cases than in controls. Mean HF was significantly lower and LF/HF (frequency range) was significantly higher in cases than in controls. Mean PSS was significantly higher in cases (25.82 ± 2.83) than in controls (22.47 ± 2.10). The majority of cases (54.5%) had a high stress level. The TSH level showed a highly significant correlation with the LF/HF ratio and with the PSS score. Conclusion: The mean Avg. RR and HF were significantly higher, RM SSD and pRR50 and LF/HF (frequency range) were significantly lower in hypothyroid patients.

10.
J Maxillofac Oral Surg ; 23(2): 320-327, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38601243

ABSTRACT

Introduction: Noma is a polymicrobial necrotizing infection of the mouth and face which destroys the soft and hard tissues of the oral and paraoral structures. Malnutrition, poverty, lack of basic hygiene, and chronic disease state etc., possess a risk of developing noma. Noma neonatorum is a progressive gangrenous disease affecting the premature infants. Aim: We present a rare case of noma in an 18 months toddler with a chronic debilitating condition predisposing to the disease progression. Results: The necrotizing infection of the face developed after six months of multiple episodes of chronic blood-tinged diarrhea. The facial defect was managed with release of fibrosis and reconstruction with a superiorly based nasolabial flap. Discussion: Noma reflects extreme malnutrition and poverty with a vast range of etiopathological agents. This case emphasizes the need to understand the host risk factors and etiopathologic agent predisposing to this rare opportunistic and dormant but devastating disease, the morbidities associated with it and measures to prevent it.

11.
Med Sci Monit ; 30: e944110, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38685688

ABSTRACT

BACKGROUND A luting agent is a dental cement used to secure a dental restoration. This study aimed to evaluate retentive strength of 50 endodontically-treated single-rooted mandibular second premolars (extracted) restored using 5 common luting (cement) agents. MATERIAL AND METHODS Fifty single-rooted mandibular second premolars with adequate root length and uniform size/shape were decoronated. After completing endodontic biomechanical preparation and obturation, root canals of all specimens were prepared to receive a cast post core. Depending upon cementation type, CPC specimens were divided in 5 groups (10 each) (Gp): Zinc phosphate (Gp ZP), polycarboxylate (Gp PC), glass ionomer (Gp GI), resin-modified glass ionomer (Gp RGI), and resin cement (Gp RC). Retentive strength was determined using the adhesive failure pull-out test. Mean/standard deviations were calculated for tensile forces (in kilograms) and differences were determined using analysis of variance (ANOVA). Multiple comparison was performed using the t test. A P value of ≤0.05 indicated a statistically significant difference. RESULTS The order of mean tensile strength from higher to lower was Gp RC (21.46) >Gp RGI (18.17) >Gp GI (16.07) >Gp ZP (15.33) >Gp PC (13.63). Differences in retentive strengths between the cements were significant (P≤0.05). Multiple-group comparisons showed that except for Gp ZP and Gp GI, all groups differed significantly from each other. CONCLUSIONS All investigated cements provided optimal retentive strengths, with wide differences between them. Resin cements should be used when CPC removal is not anticipated, while polycarboxylate or zinc phosphate should be used if CPC removal is anticipated.


Subject(s)
Bicuspid , Dental Cements , Humans , Mandible , Post and Core Technique , Glass Ionomer Cements , Resin Cements , Tensile Strength , Materials Testing/methods , Dental Restoration, Permanent/methods , Tooth Root/drug effects , Zinc Phosphate Cement
12.
Nanoscale ; 16(18): 8836-8842, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38629213

ABSTRACT

Ultrathin 2D metal-organic frameworks (MOFs) exhibit a myriad of unparalleled properties, rendering them extensively applicable across various fields. Despite this, developing a 2D MOF sensor for detecting hazardous amines in water remains a formidable challenge. To address this issue, we synthesized Ni-btc MOF ultrathin nanosheets with a thickness of approximately 4.15 nm for the detection of amines in water. These nanosheets demonstrated a notable "turn-on" fluorescence response in the presence of ammonia and aliphatic amines. The detection limit for aliphatic amines ranged from 297 to 424 nM, while for ammonia, it reached an impressive low limit of around 42 nM, which is an excellent value compared to other reported MOFs for ammonia sensing in water. Density functional theory calculations elucidated the mechanism underlying fluorescence enhancement. Additionally, a mixed matrix membrane based on MOF nanosheets was fabricated for real-time sensing that exhibits an immediate color change in the presence of ammonia and aliphatic amines.

13.
Recent Pat Biotechnol ; 18(4): 344-357, 2024.
Article in English | MEDLINE | ID: mdl-38566382

ABSTRACT

BACKGROUND: There are patents available related to fermented food and beverages which enhance to human health. Citrus limetta (Mosambi) has a high content of flavonoids and exhibits antioxidant activity, which could stimulate the digestive system and be useful for gastroprotective activity. It supports digestion by neutralizing the acidic digestive juices and reducing gastric acidity. OBJECTIVE: This study explored the potential of using waste peel extract from Citrus limetta to prevent ulcers. The study specifically sought to assess the anti-ulcer properties of fermented and non-fermented extracts and compare them. Further, the study looked at the potential benefits of treating or preventing ulcers with Citrus limetta waste peels and whether fermentation affected the efficacy of the treatment. METHODS: Thirty female Wistar albino rats were equally distributed into five different groups. Group 1 received distilled water (20 ml/kg/b.w); Group 2 received indomethacin (mg/kg/b.w); Group 3 received omeprazole (20 mg/kg/b.w); Group 4 received aqueous extract of Mosambi peel (400 mg/kg/b.w) and Group 5 received fermented product of extract of Mosambi peel (400 mg/kg/b.w). RESULTS: Findings explored that, compared to non-fermented citrus fruit juice, biofermented exhibited less gastric volume (1.58 ± 0.10 ml vs. 1.8 ± 0.14 ml), reduced MDA levels (355.23 ± 100.70 µmol/mg protein vs. 454.49 ± 155.88 µmol/mg protein), and low ulcer index (0.49 ± 0.07 vs. 0.72 ± 0.14). CONCLUSION: The results suggest that the bio-fermented product of Citrus limetta peel has better anti-ulcer potential against peptic ulcer induced by indomethacin in Wistar albino rats compared to non-fermented.


Subject(s)
Anti-Ulcer Agents , Citrus , Fermentation , Plant Extracts , Rats, Wistar , Stomach Ulcer , Animals , Citrus/chemistry , Female , Rats , Plant Extracts/pharmacology , Plant Extracts/chemistry , Anti-Ulcer Agents/pharmacology , Anti-Ulcer Agents/chemistry , Stomach Ulcer/drug therapy , Stomach Ulcer/metabolism , Stomach Ulcer/pathology , Patents as Topic , Indomethacin/metabolism , Fruit/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Omeprazole/pharmacology
14.
Biomed Mater ; 19(2)2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38364283

ABSTRACT

A facile cost-effective green synthesis approach has been used to synthesize carbon-dot (CDs) from the Kernel part of theAzadirachta Indicaseeds and investigated their fluorescent and metal ions sensing capability and also used for the delivery of drugs. Metallic ions such as Ca2+, K+, Na+, Fe3+,and Zn2+which are biologically important for many reactions and are selectively detected through the novel CDs. The resultant dot size of CDs (∼4 nm) is useful to eliminate the 'Achilles heel' problems, which is associated with the Zn2+in the body and its detection is a very challenging task. It is found that the sensitivity of CDs for the detection of Zn2+can be regulated by using different solvents. These CDs can also be used as a sensing probe for the selective detection of Fe3+at a very low concentration of solution (∼5 µM). The synthesis method of CDs reported here is cost-effective, very fast and it is highly selective towards Fe3+and Zn2+. Due to the fast response capability of these CDs, logic gate operation is achieved and it provides a new understanding to construct potential next-generation molecular devices for the detection of different biomolecules with high selectivity. Additionally, these CDs are biocompatible against normal healthy cells, capable of loading small biomolecules and drugs due to their porous nature, and exhibited potential impact for breast cancer therapy. It is observed that a significant synergic therapeutic effect of CDs loaded with doxorubicin against breast cancer cells is very promising. Thus, the CDs reported herein in this work have been synthesized through a green synthesis approach and can be used as a molecular probe for the detection of metal ions as well as for drug delivery applications.


Subject(s)
Breast Neoplasms , Quantum Dots , Humans , Female , Carbon , Cost-Benefit Analysis , Metals , Fluorescent Dyes , Ions
15.
J Vis Exp ; (203)2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38284531

ABSTRACT

Polyadenylation is a crucial posttranscriptional modification that adds poly(A) tails to the 3' end of mRNA molecules. The length of the poly(A) tail is tightly regulated by cellular processes. Dysregulation of mRNA polyadenylation has been associated with abnormal gene expression and various diseases, including cancer, neurological disorders, and developmental abnormalities. Therefore, comprehending the dynamics of polyadenylation is vital for unraveling the complexities of mRNA processing and posttranscriptional gene regulation. This paper presents a method for measuring poly(A) tail lengths in RNA samples isolated from Drosophila larval brains and Drosophila Schneider S2 cells. We employed the guanosine/inosine (G/I) tailing approach, which involves the enzymatic addition of G/I residues at the 3' end of mRNA using yeast poly(A) polymerase. This modification protects the RNA's 3' end from enzymatic degradation. The protected full-length poly(A) tails are then reverse-transcribed using a universal antisense primer. Subsequently, PCR amplification is performed using a gene-specific oligo that targets the gene of interest, along with a universal sequence oligo used for reverse transcription. This generates PCR products encompassing the poly(A) tails of the gene of interest. Since polyadenylation is not a uniform modification and results in tails of varying lengths, the PCR products display a range of sizes, leading to a smear pattern on agarose gel. Finally, the PCR products are subjected to high-resolution capillary gel electrophoresis, followed by quantification using the sizes of the poly(A) PCR products and the gene-specific PCR product. This technique offers a straightforward and reliable tool for analyzing poly(A) tail lengths, enabling us to gain deeper insights into the intricate mechanisms governing mRNA regulation.


Subject(s)
Drosophila , Polyadenylation , Animals , Drosophila/genetics , Drosophila/metabolism , Cell Line , RNA, Messenger/metabolism , Brain/metabolism , Poly A/metabolism
16.
bioRxiv ; 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-37131782

ABSTRACT

Dual Leucine Zipper Kinase (DLK) mediates multiple neuronal stress responses, and its expression levels are constantly suppressed to prevent excessive stress signaling. We found that Wallenda (Wnd), the Drosophila ortholog of DLK, is highly enriched in the axon terminals of Drosophila sensory neurons in vivo and that this subcellular localization is necessary for Highwire-mediated Wnd protein turnover under normal conditions. Our structure-function analysis found that Wnd palmitoylation is essential for its axon terminal localization. Palmitoylation-defective Wnd accumulated in neuronal cell bodies, exhibited dramatically increased protein expression levels, and triggered excessive neuronal stress responses. Defective intracellular transport is implicated in neurodegenerative conditions. Comprehensive dominant-negative Rab protein screening identified Rab11 as an essential factor for Wnd localization in axon terminals. Consequently, Rab11 loss-of-function increased the protein levels of Wnd and induced neuronal stress responses. Inhibiting Wnd activity significantly ameliorated neuronal loss and c-Jun N-terminal kinase signaling triggered by Rab11 loss-of-function. Taken together, these suggest that DLK proteins are constantly transported to axon terminals by Rab11 for protein turnover. Our study demonstrates how subcellular protein localization is coupled to protein turnover for neuronal stress signaling. Highlights: Wnd is highly enriched in axon terminals.Wnd protein turnover by Hiw is restricted in the axon terminals.Protein palmitoylation of Wnd and Rab11 activity is essential for Wnd axonal localization. Rab11 mutations and defective Wnd palmitoylation impair Wnd protein turnover leading to increased Wnd protein levels and neuronal loss. Inhibiting Wnd activity mitigates neuronal stress response caused by Rab11 loss-of-function.

17.
Nanoscale Adv ; 5(22): 6045-6052, 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37941962

ABSTRACT

Polyoxometalates (POMs) are versatile anionic clusters which have attracted a lot of attention in biomedical investigations. To counteract the increasing resistance effect of cancer cells and the high toxicity of chemotherapeutic treatments, POM-based metallodrugs can be strategically synthesized by adjusting the stereochemical and physicochemical features of POMs. In the present report a polyoxomolybdate (POMo) based organic-inorganic hybrid solid (C6H16N)(C6H15N)2[Mo8O26]·3H2O, solid 1, has been synthesized and its antitumoral activities have been investigated against three cancer cell lines namely, A549 (Lung cancer), HepG2 (Liver cancer), and MCF-7 (Breast cancer) with IC50 values 56.2 µmol L-1, 57.3 µmol L-1, and 55.2 µmol L-1 respectively. The structural characterization revealed that solid 1 consists of an octa molybdate-type cluster connected by three triethylamine molecules via hydrogen bonding interactions. The electron microscopy analysis suggests the nanocapsule-like morphology of solid 1 in the size range of 50-70 nm. The UV-vis absorption spectra were used to assess the binding ability of synthesized POM-based solid 1 to calf thymus DNA (ctDNA), which further explained the binding interaction between POMo and ctDNA and the binding constant was calculated to be 2.246 × 103 giving evidence of groove binding.

18.
PLoS Pathog ; 19(11): e1011770, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37988347

ABSTRACT

Signalling pathways in malaria parasite remain poorly defined and major reason for this is the lack of understanding of the function of majority of parasite protein kinases and phosphatases in parasite signalling and its biology. In the present study, we have elucidated the function of Protein Kinase 2 (PfPK2), which is known to be indispensable for the survival of human malaria parasite Plasmodium falciparum. We demonstrate that it is involved in the invasion of host erythrocytes, which is critical for establishing infection. In addition, PfPK2 may also be involved in the maturation of the parasite post-invasion. PfPK2 regulates the release of microneme proteins like Apical Membrane Antigen 1 (AMA1), which facilitates the formation of Tight Junction between the merozoite and host erythrocyte- a key step in the process of invasion. Comparative phosphoproteomics studies revealed that PfPK2 may be involved in regulation of several key proteins involved in invasion and signalling. Furthermore, PfPK2 regulates the generation of cGMP and the release of calcium in the parasite, which are key second messengers for the process of invasion. These and other studies have shed light on a novel signalling pathway in which PfPK2 acts as an upstream regulator of important cGMP-calcium signalling, which plays an important role in parasite invasion.


Subject(s)
Parasites , Protein Kinases , Animals , Humans , Protein Kinases/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Parasites/metabolism , Calcium/metabolism , Plasmodium falciparum/metabolism , Erythrocytes/parasitology
19.
ACS Appl Bio Mater ; 6(12): 5644-5661, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-37993284

ABSTRACT

In this work, the glycine-based acryloyl monomer is polymerized to obtain a neurogenic polymeric hydrogel for regenerative applications. The synthesized poly(N-acryloylglycine-acrylamide) [poly(NAG-b-A)] nanohydrogel exhibits high swelling (∼1500%) and is mechanically very stable, biocompatible, and proliferative in nature. The poly(NAG-b-A) nanohydrogel provides a stable 3D extracellular mimetic environment and promotes healthy neurite growth for primary cortical neurons by facilitating cellular adhesion, proliferation, actin filament stabilization, and neuronal differentiation. Furthermore, the protective role of the poly(NAG-b-A) hydrogel for the neurons in oxidative stress conditions is revealed and it is found that it is a clinically relevant material for neuronal regenerative applications, such as for promoting nerve regeneration via GSK3ß inhibition. This hydrogel additionally plays an important role in modulating the biological microenvironment, either as an agonist and antagonist or as an antioxidant. Furthermore, it favors the physiological responses and eases the neurite growth efficiency. Additionally, we found out that the conversion of glycine-based acryloyl monomers into their corresponding polymer modulates the mechanical performance, mimics the cellular microenvironment, and accelerates the self-healing capability due to the responsive behavior towards reactive oxygen species (ROS). Thus, the p(NAG-b-A) hydrogel could be a potential candidate to induce neuronal regeneration since it provides a physical cue and significantly boosts neurite outgrowth and also maintains the microtubule integrity in neuronal cells.


Subject(s)
Hydrogels , Neurites , Hydrogels/pharmacology , Hydrogels/metabolism , Neurites/metabolism , Acrylamide , Oxidative Stress , Cellular Microenvironment , Polymers/pharmacology , Polymers/metabolism , Glycine/pharmacology
20.
Cytojournal ; 20: 22, 2023.
Article in English | MEDLINE | ID: mdl-37681072
SELECTION OF CITATIONS
SEARCH DETAIL