Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38895464

ABSTRACT

The ventral tegmental area (VTA) contains projection neurons that release the neurotransmitters dopamine, GABA, and/or glutamate from distal synapses. VTA also contains GABA neurons that synapse locally on to VTA dopamine neurons, synapses widely credited to a population of so-called VTA interneurons. Interneurons in cortex, striatum, and elsewhere have well-defined morphological features, physiological properties, and molecular markers, but such features have not been clearly described in VTA. Indeed, there is scant evidence that local and distal synapses originate from separate populations of VTA GABA neurons. In this study we tested whether several markers expressed in non-dopamine VTA neurons are selective markers of interneurons, defined as neurons that synapse locally but not distally. Challenging previous assumptions, we found that VTA neurons genetically defined by expression of parvalbumin, somatostatin, neurotensin, or mu-opioid receptor project to known VTA targets including nucleus accumbens, ventral pallidum, lateral habenula, and prefrontal cortex. Moreover, we provide evidence that VTA GABA and glutamate projection neurons make functional inhibitory or excitatory synapses locally within VTA. These findings suggest that local collaterals of VTA projection neurons could mediate functions prior attributed to VTA interneurons. This study underscores the need for a refined understanding of VTA connectivity to explain how heterogeneous VTA circuits mediate diverse functions related to reward, motivation, or addiction.

2.
Neuron ; 112(3): 488-499.e5, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38086374

ABSTRACT

Ventral tegmental area (VTA) projections to the nucleus accumbens (NAc) drive reward-related motivation. Although dopamine neurons are predominant, a substantial glutamatergic projection is also present, and a subset of these co-release both dopamine and glutamate. Optogenetic stimulation of VTA glutamate neurons not only supports self-stimulation but can also induce avoidance behavior, even in the same assay. Here, we parsed the selective contribution of glutamate or dopamine co-release from VTA glutamate neurons to reinforcement and avoidance. We expressed channelrhodopsin-2 (ChR2) in mouse VTA glutamate neurons in combination with CRISPR-Cas9 to disrupt either the gene encoding vesicular glutamate transporter 2 (VGLUT2) or tyrosine hydroxylase (Th). Selective disruption of VGLUT2 abolished optogenetic self-stimulation but left real-time place avoidance intact, whereas CRISPR-Cas9 deletion of Th preserved self-stimulation but abolished place avoidance. Our results demonstrate that glutamate release from VTA glutamate neurons is positively reinforcing but that dopamine release from VTA glutamate neurons can induce avoidance behavior.


Subject(s)
Dopamine , Glutamic Acid , Mice , Animals , Glutamic Acid/physiology , Reward , Ventral Tegmental Area/physiology , Dopaminergic Neurons/metabolism , Vesicular Glutamate Transport Protein 2/genetics , Vesicular Glutamate Transport Protein 2/metabolism , Tyrosine 3-Monooxygenase/metabolism
3.
J Neurosci ; 43(26): 4837-4855, 2023 06 28.
Article in English | MEDLINE | ID: mdl-37286352

ABSTRACT

Decision making is a complex cognitive process that recruits a distributed network of brain regions, including the basolateral amygdala (BLA) and nucleus accumbens shell (NAcSh). Recent work suggests that communication between these structures, as well as activity of cells expressing dopamine (DA) D2 receptors (D2R) in the NAcSh, are necessary for some forms of decision making; however, the contributions of this circuit and cell population during decision making under risk of punishment are unknown. The current experiments addressed this question using circuit-specific and cell type-specific optogenetic approaches in rats during a decision making task involving risk of punishment. In experiment 1, Long-Evans rats received intra-BLA injections of halorhodopsin or mCherry (control) and in experiment 2, D2-Cre transgenic rats received intra-NAcSh injections of Cre-dependent halorhodopsin or mCherry. Optic fibers were implanted in the NAcSh in both experiments. Following training in the decision making task, BLA→NAcSh or D2R-expressing neurons were optogenetically inhibited during different phases of the decision process. Inhibition of the BLA→NAcSh during deliberation (the time between trial initiation and choice) increased preference for the large, risky reward (increased risk taking). Similarly, inhibition during delivery of the large, punished reward increased risk taking, but only in males. Inhibition of D2R-expressing neurons in the NAcSh during deliberation increased risk taking. In contrast, inhibition of these neurons during delivery of the small, safe reward decreased risk taking. These findings extend our knowledge of the neural dynamics of risk taking, revealing sex-dependent circuit recruitment and dissociable activity of selective cell populations during decision making.SIGNIFICANCE STATEMENT Until recently, the ability to dissect the neural substrates of decision making involving risk of punishment (risk taking) in a circuit-specific and cell-specific manner has been limited by the tools available for use in rats. Here, we leveraged the temporal precision of optogenetics, together with transgenic rats, to probe contributions of a specific circuit and cell population to different phases of risk-based decision making. Our findings reveal basolateral amygdala (BLA)→nucleus accumbens shell (NAcSh) is involved in evaluation of punished rewards in a sex-dependent manner. Further, NAcSh D2 receptor (D2R)-expressing neurons make unique contributions to risk taking that vary across the decision making process. These findings advance our understanding of the neural principles of decision making and provide insight into how risk taking may become compromised in neuropsychiatric diseases.


Subject(s)
Decision Making , Punishment , Female , Rats , Male , Animals , Rats, Long-Evans , Decision Making/physiology , Rats, Transgenic , Halorhodopsins , Reward , Receptors, Dopamine D2/metabolism , Nucleus Accumbens/physiology
4.
Neuropharmacology ; 234: 109544, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37055008

ABSTRACT

Strong expression of the G protein-coupled receptor (GPCR) neurotensin receptor 1 (NTR1) in ventral tegmental area (VTA) dopamine (DA) neurons and terminals makes it an attractive target to modulate DA neuron activity and normalize DA-related pathologies. Recent studies have identified a novel class of NTR1 ligand that shows promising effects in preclinical models of addiction. A lead molecule, SBI-0654553 (SBI-553), can act as a positive allosteric modulator of NTR1 ß-arrestin recruitment while simultaneously antagonizing NTR1 Gq protein signaling. Using cell-attached recordings from mouse VTA DA neurons we discovered that, unlike neurotensin (NT), SBI-553 did not independently increase spontaneous firing. Instead, SBI-553 blocked the NT-mediated increase in firing. SBI-553 also antagonized the effects of NT on dopamine D2 auto-receptor signaling, potentially through its inhibitory effects on G-protein signaling. We also measured DA release directly, using fast-scan cyclic voltammetry in the nucleus accumbens and observed antagonist effects of SBI-553 on an NT-induced increase in DA release. Further, in vivo administration of SBI-553 did not notably change basal or cocaine-evoked DA release measured in NAc using fiber photometry. Overall, these results indicate that SBI-553 blunts NT's effects on spontaneous DA neuron firing, D2 auto-receptor function, and DA release, without independently affecting these measures. In the presence of NT, SBI-553 has an inhibitory effect on mesolimbic DA activity, which could contribute to its efficacy in animal models of psychostimulant use.


Subject(s)
Dopamine D2 Receptor Antagonists , Dopamine , Dopaminergic Neurons , Neurotensin , Nucleus Accumbens , Receptors, Neurotensin , Ventral Tegmental Area , Ventral Tegmental Area/metabolism , Ventral Tegmental Area/physiology , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/physiology , Nucleus Accumbens/metabolism , Dopamine/metabolism , Male , Female , Animals , Mice , Mice, Inbred C57BL , Presynaptic Terminals/metabolism , Presynaptic Terminals/physiology , Action Potentials/drug effects , Receptors, Neurotensin/antagonists & inhibitors , Receptors, Neurotensin/metabolism , Neurotensin/metabolism , Neurotensin/pharmacology , Ligands , Dopamine D2 Receptor Antagonists/metabolism , Dopamine D2 Receptor Antagonists/pharmacology
5.
bioRxiv ; 2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36711946

ABSTRACT

Decision making is a complex cognitive process that recruits a distributed network of brain regions, including the basolateral amygdala (BLA) and nucleus accumbens shell (NAcSh). Recent work suggests that communication between these structures, as well as activity of cells expressing dopamine D2 receptors (D2R) in the NAcSh, are necessary for some forms of decision making; however, the contributions of this circuit and cell population during decision making under risk of punishment are unknown. The current experiments addressed this question using circuit- and cell type-specific optogenetic approaches in rats during a decision-making task involving risk of punishment. In Experiment 1, Long-Evans rats received intra-BLA injections of halorhodopsin or mCherry (control) and in Experiment 2, D2-Cre transgenic rats received intra-NAcSh injections of Cre-dependent halorhodopsin or mCherry. Optic fibers were implanted in the NAcSh in both experiments. Following training in the decision-making task, BLA→NAcSh or D2R-expressing neurons were optogenetically inhibited during different phases of the decision process. Inhibition of the BLA→NAcSh during deliberation (the time between trial initiation and choice) increased choice of the large, risky reward (increased risk taking). Similarly, inhibition during delivery of the large, punished reward increased risk taking, but only in males. Inhibition of D2R-expressing neurons in the NAcSh during deliberation increased risk taking. In contrast, inhibition of these neurons during delivery of the small, safe reward decreased risk taking. These findings extend our knowledge of the neural dynamics of risk taking, revealing sex-dependent circuit recruitment and dissociable activity of selective cell populations during decision making.

6.
Nat Neurosci ; 24(8): 1089-1099, 2021 08.
Article in English | MEDLINE | ID: mdl-34083786

ABSTRACT

Methods to enhance adult neurogenesis by reprogramming glial cells into neurons enable production of new neurons in the adult nervous system. Development of therapeutically viable approaches to induce new neurons is now required to bring this concept to clinical application. Here, we successfully generate new neurons in the cortex and dentate gyrus of the aged adult mouse brain by transiently suppressing polypyrimidine tract binding protein 1 using an antisense oligonucleotide delivered by a single injection into cerebral spinal fluid. Radial glial-like cells and other GFAP-expressing cells convert into new neurons that, over a 2-month period, acquire mature neuronal character in a process mimicking normal neuronal maturation. The new neurons functionally integrate into endogenous circuits and modify mouse behavior. Thus, generation of new neurons in the dentate gyrus of the aging brain can be achieved with a therapeutically feasible approach, thereby opening prospects for production of neurons to replace those lost to neurodegenerative disease.


Subject(s)
Dentate Gyrus , Ependymoglial Cells , Neurogenesis/physiology , Neurons , Polypyrimidine Tract-Binding Protein/antagonists & inhibitors , Animals , Cellular Reprogramming/physiology , Dentate Gyrus/cytology , Dentate Gyrus/physiology , Ependymoglial Cells/cytology , Ependymoglial Cells/physiology , Mice , Neurons/cytology , Neurons/physiology , Oligonucleotides, Antisense
7.
J Neurosci ; 39(17): 3249-3263, 2019 04 24.
Article in English | MEDLINE | ID: mdl-30804095

ABSTRACT

Social recognition, the ability to recognize individuals that were previously encountered, requires complex integration of sensory inputs with previous experience. Here, we use a variety of approaches to discern how oxytocin-sensitive neurons in the PFC exert descending control over a circuit mediating social recognition in mice. Using male mice with Cre-recombinase directed to the oxytocin receptor gene (Oxtr), we revealed that oxytocin receptors (OXTRs) are expressed on glutamatergic neurons in the PFC, optogenetic stimulation of which elicited activation of neurons residing in several mesolimbic brain structures. Optogenetic stimulation of axons in the BLA arising from OXTR-expressing neurons in the PFC eliminated the ability to distinguish novel from familiar conspecifics, but remarkably, distinguishing between novel and familiar objects was unaffected. These results suggest that an oxytocin-sensitive PFC to BLA circuit is required for social recognition. The implication is that impaired social memory may manifest from dysregulation of this circuit.SIGNIFICANCE STATEMENT Using mice, we demonstrate that optogenetic activation of the neurons in the PFC that express the oxytocin receptor gene (Oxtr) impairs the ability to distinguish between novel and familiar conspecifics, but the ability to distinguish between novel and familiar objects remains intact. Subjects with autism spectrum disorders (ASDs) have difficulty identifying a person based on remembering facial features; however, ASDs and typical subjects perform similarly when remembering objects. In subjects with ASD, viewing the same face increases neural activity in the PFC, which may be analogous to the optogenetic excitation of oxytocin receptor (OXTR) expressing neurons in the PFC that impairs social recognition in mice. The implication is that overactivation of OXTR-expressing neurons in the PFC may contribute to ASD symptomology.


Subject(s)
Glutamic Acid/metabolism , Neurons/metabolism , Prefrontal Cortex/metabolism , Receptors, Oxytocin/metabolism , Recognition, Psychology/physiology , Social Behavior , Animals , Male , Mice , Mice, Transgenic , Optogenetics , Receptors, Oxytocin/genetics
8.
J Neurosci ; 37(48): 11537-11548, 2017 11 29.
Article in English | MEDLINE | ID: mdl-29079687

ABSTRACT

Decision making is a multifaceted process, consisting of several distinct phases that likely require different cognitive operations. Previous work showed that the basolateral amygdala (BLA) is a critical substrate for decision making involving risk of punishment; however, it is unclear how the BLA is recruited at different stages of the decision process. To this end, the current study used optogenetics to inhibit the BLA during specific task phases in a model of risky decision making (risky decision-making task) in which rats choose between a small, "safe" reward and a large reward accompanied by varying probabilities of footshock punishment. Male Long-Evans rats received intra-BLA microinjections of viral vectors carrying either halorhodopsin (eNpHR3.0-mCherry) or mCherry alone (control) followed by optic fiber implants and were trained in the risky decision-making task. Laser delivery during the task occurred during intertrial interval, deliberation, or reward outcome phases, the latter of which was further divided into the three possible outcomes (small, safe; large, unpunished; large, punished). Inhibition of the BLA selectively during the deliberation phase decreased choice of the large, risky outcome (decreased risky choice). In contrast, BLA inhibition selectively during delivery of the large, punished outcome increased risky choice. Inhibition had no effect during the other phases, nor did laser delivery affect performance in control rats. Collectively, these data indicate that the BLA can either inhibit or promote choice of risky options, depending on the phase of the decision process in which it is active.SIGNIFICANCE STATEMENT To date, most behavioral neuroscience research on neural mechanisms of decision making has used techniques that preclude assessment of distinct phases of the decision process. Here we show that optogenetic inhibition of the BLA has opposite effects on choice behavior in a rat model of risky decision making, depending on the phase in which inhibition occurs. BLA inhibition during a period of deliberation between small, safe and large, risky outcomes decreased risky choice. In contrast, BLA inhibition during receipt of the large, punished outcome increased risky choice. These findings highlight the importance of temporally targeted approaches to understand neural substrates underlying complex cognitive processes. More importantly, they reveal novel information about dynamic BLA modulation of risky choice.


Subject(s)
Basolateral Nuclear Complex/chemistry , Basolateral Nuclear Complex/physiology , Decision Making/physiology , Neural Inhibition/physiology , Optogenetics/methods , Risk-Taking , Animals , Conditioning, Operant/physiology , Male , Rats , Rats, Long-Evans , Time Factors
9.
J Neurochem ; 142(6): 908-919, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28640931

ABSTRACT

Neuroinflammation, especially activation of microglia, the key immune cells in the brain, has been proposed to contribute to the pathogenesis of ischemic stroke. However, the dynamics and the potential mediators of microglial activation following ischemic neuronal injury are not well understood. In this study, using oxygen/glucose deprivation and reoxygenation with neuronal and microglial cell cultures as an in vitro model of ischemic neuronal injury, we set out to identify neuronal factors released from injured neurons that are capable of inducing microglial activation. Conditioned media (CM) from hippocampal and cortical neurons exposed to oxygen/glucose deprivation and reoxygenation induced significant activation of microglial cells as well as primary microglia, evidenced by up-regulation of inducible nitric oxide synthase, increased production of nitrite and reactive oxygen species, and increased expression of microglial markers. Mechanistically, neuronal ischemia-responsive protein 94 (Irp94) was a key contributor to microglial activation since significant increase in Irp94 was detected in the neuronal CM following ischemic insult and immunodepletion of Irp94 rendered ischemic neuronal CM ineffective in inducing microglial activation. Ischemic insult-augmented oxidative stress was a major facilitator of neuronal Irp94 release, and pharmacological inhibition of NADPH oxidase significantly reduced the ischemic injury-induced neuronal reactive oxygen species production and Irp94 release. Taken together, these results indicate that neuronal Irp94 may play a pivotal role in the propagation of ischemic neuronal damage. Continued studies may help identify Irp94 and/or related proteins as potential therapeutic targets and/or diagnostic/prognostic biomarkers for managing ischemia-associated brain disorders.

10.
Mol Biosyst ; 11(2): 607-17, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25465055

ABSTRACT

Inhibition of both Rho kinase (ROCK-I) and NADPH oxidase (NOX2) to treat neuroinflammation could be very effective in the treatment of progressive neurological diseases like Alzheimer's disease, autism spectral disorder, and fragile X syndrome. NOX2 being a multi-enzyme component is activated during host defense in phagocytes such as microglia, to catalyze the production of superoxide from oxygen, while ROCK is an important mediator of fundamental cell processes like adhesion, proliferation and migration. Phosphorylated ROCK was found to activate NOX2 assembly via Ras related C3 botulinum toxin substrate (Rac) in disease conditions. Overexpression of ROCK-I and NOX2 in innate immune cells like microglial cells contribute to progressive neuronal damage early in neurological disease development. In the present study we employed a computer-aided methodology combining pharmacophores and molecular docking to identify new chemical entities that could inhibit ROCK-I as well as NOX2 (p47 phox). Among the huge dataset of a commercial database, top 18 molecules with crucial binding interactions were selected for biological evaluation. Seven among the lead molecules exhibited inhibitory potential against ROCK-I and NOX2 with IC50s ranging from 1.588 to 856.2 nM and 0.8942 to 10.24 µM, respectively, and emerged as potential hits as dual inhibitors with adequate selectivity index (SI = CC50/GIC50) in cell-based assays. The most active compound 3 was further found to show reduction of the pro-inflammatory mediators such as TNFα, interleukin-6 (IL-6) and interleukin-1beta (IL-1ß) mRNA expression levels in activated (MeHg treated) human neuroblastoma (IMR32) cell lines. Hence the present work documented the utility of these dual inhibitors as prototypical leads to be useful for the treatment of neurological disorders including autism spectrum disorder and Alzheimer's disease.


Subject(s)
Autism Spectrum Disorder/drug therapy , Drug Design , Enzyme Inhibitors/therapeutic use , Inflammation/drug therapy , NADPH Oxidases/antagonists & inhibitors , Nervous System Diseases/drug therapy , rho-Associated Kinases/antagonists & inhibitors , Cell Line, Tumor , Cell Movement/drug effects , Crystallography, X-Ray , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Gene Expression Regulation/drug effects , HEK293 Cells , Humans , Inflammation/pathology , Molecular Docking Simulation , NADPH Oxidases/metabolism , Nervous System Diseases/pathology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , rho-Associated Kinases/metabolism
11.
J Chem Inf Model ; 54(10): 2876-86, 2014 Oct 27.
Article in English | MEDLINE | ID: mdl-25254429

ABSTRACT

Rho-associated protein kinase (ROCK) plays a key role in regulating a variety of cellular processes, and dysregulation of ROCK signaling or expression is implicated in numerous diseases and infections. ROCK proteins have therefore emerged as validated targets for therapeutic intervention in various pathophysiological conditions such as diabetes-related complications or hepatitis C-associated pathogenesis. In this study, we report on the design and identification of novel ROCK inhibitors utilizing energy based pharmacophores and shape-based approaches. The most potent compound 8 exhibited an IC50 value of 1.5 µM against ROCK kinase activity and inhibited methymercury-induced neurotoxicity of IMR-32 cells at GI50 value of 0.27 µM. Notably, differential scanning fluorometric analysis revealed that ROCK protein complexed with compound 8 with enhanced stability relative to Fasudil, a validated nanomolar range ROCK inhibitor. Furthermore, all compounds exhibited ≥96 µM CC50 (50% cytotoxicity) in Huh7 hepatoma cells, while 6 compounds displayed anti-HCV activity in HCV replicon cells. The identified lead thus constitutes a prototypical molecule for further optimization and development as anti-ROCK inhibitor.


Subject(s)
Antineoplastic Agents/chemistry , Protein Kinase Inhibitors/chemistry , Small Molecule Libraries/chemistry , rho-Associated Kinases/chemistry , 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/analogs & derivatives , 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/chemistry , 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/pharmacology , Antineoplastic Agents/pharmacology , Binding Sites , Cell Line, Tumor , Cell Survival/drug effects , Crystallography, X-Ray , Drug Design , Hepacivirus/drug effects , Hepatocytes/drug effects , Hepatocytes/enzymology , Hepatocytes/pathology , High-Throughput Screening Assays , Humans , Ligands , Methylmercury Compounds/antagonists & inhibitors , Methylmercury Compounds/toxicity , Molecular Conformation , Molecular Dynamics Simulation , Neurons/drug effects , Neurons/enzymology , Neurons/pathology , Protein Binding , Protein Kinase Inhibitors/pharmacology , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Small Molecule Libraries/pharmacology , Structure-Activity Relationship , Thermodynamics , User-Computer Interface , rho-Associated Kinases/antagonists & inhibitors , rho-Associated Kinases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...