Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
PhytoKeys ; 237: 51-77, 2024.
Article in English | MEDLINE | ID: mdl-38269332

ABSTRACT

Derrisrubricosta Boonprajan & Sirich., sp. nov., a new species of the genus Derris Lour. (Fabaceae) was discovered in Peninsular Thailand. The overall morphology demonstrates that the species most resembles D.pubipetala. Nevertheless, the species has several autapomorphies differentiating it from other Derris species, e.g., the presence of reddish midribs of the mature leaflets, sparsely hairy stamen filaments, prominent hairs at the base of the anthers, and presence of glandular trichomes along the leaflet midrib. Additionally, HPLC fingerprints of this species showed a distinction from D.pubipetala by the absence of phytochemical compound peaks after 13 min. Retention Time (RT). Results from molecular phylogenetic analyses also strongly supported the taxonomic status as a new species.

2.
PhytoKeys ; 181: 65-77, 2021.
Article in English | MEDLINE | ID: mdl-34566448

ABSTRACT

Within the legume family, the taxonomic status of subtribe Glycyrrhizinae of tribe Galegeae and of the genus Adinobotrys has been re-assessed. Based on genome skimming data, we conducted phylogenomic analyses of the inverted repeat-lacking clade within subfamily Papilionoideae. The results support the sister relationship between Glycyrrhizeae and Adinobotrys. Glycyrrhizeae is resurrected based on Glycyrrhiza and Glycyrrhizopsis, and a new tribe, Adinobotryeae, is proposed to accommodate Adinobotrys.

3.
Mol Phylogenet Evol ; 163: 107235, 2021 10.
Article in English | MEDLINE | ID: mdl-34146677

ABSTRACT

The inverted repeat-lacking clade (IRLC) is one of the most derived clades within the subfamily Papilionoideae of the legume family, and includes various economically important plants, e.g., chickpeas, peas, liquorice, and the largest genus of angiosperms, Astragalus. Tribe Wisterieae is one of the earliest diverged groups of the IRLC, and its generic delimitation and spatiotemporal diversification needs further clarifications. Based on genome skimming data, we herein reconstruct the phylogenomic framework of the IRLC, and infer the inter-generic relationships and historical biogeography of Wisterieae. We redefine tribe Caraganeae to contain Caragana only, and tribe Astragaleae is reduced to the Erophaca-Astragalean clade. The chloroplast capture scenario was hypothesized as the most plausible explanation of the topological incongruences between the chloroplast CDSs and nuclear ribosomal DNA trees in both the Glycyrrhizinae-Adinobotrys-Wisterieae clade and the Chesneyeae-Caraganeae-Hedysareae clade. A new name, Caragana lidou L. Duan & Z.Y. Chang, is proposed within Caraganeae. Thirteen genera are herein supported within Wisterieae, including a new genus, Villosocallerya L. Duan, J. Compton & Schrire, segregated from Callerya. Our biogeographic analyses suggest that Wisterieae originated in the late Eocene and its most recent common ancestor (MRCA) was distributed in continental southeastern Asia. Lineages of Wisterieae remained in the ancestral area from the early Oligocene to the early Miocene. By the middle Miocene, Whitfordiodendron and the MRCA of Callerya-Kanburia-Villosocallerya Clade became disjunct between the Sunda area and continental southeastern Asia, respectively; the MRCA of Wisteria migrated to North America via the Bering land bridge. The ancestor of Austrocallerya and Padbruggea migrated to the Wallacea-Oceania area, which split in the early Pliocene. In the Pleistocene, Wisteria brachybotrys, W. floribunda and Wisteriopsis japonica reached Japan, and Callerya cinerea dispersed to South Asia. This study provides a solid phylogenomic for further evolutionary/biogeographic/systematic investigations on the ecologically diverse and economically important IRLC legumes.


Subject(s)
Fabaceae , Biological Evolution , Fabaceae/genetics , Genome , Phylogeny , Phylogeography
4.
Plants (Basel) ; 9(3)2020 Mar 22.
Article in English | MEDLINE | ID: mdl-32235808

ABSTRACT

'Mahat' is a well-known medicinal plant utilized in Thailand. The Thai name 'Mahat' has been used in many scientific articles for years. However, it is, unpredictably, a homonym of two scientific names in Flora of Thailand, i.e., A. lacucha and A. thailandicus. Additionally, both species are complex due to their high morphological variation. This causes difficulties in species identification especially when this Thai name is referred to as the scientific name for research publication, quality control of pharmaceutical raw materials, and registration of pharmaceutical products. In this study, we scrutinized the taxonomy of 'Mahat' by detailed examination of its morphology and distribution, including molecular and qualitative phytochemical studies. Leaf surfaces were inspected using scanning electron microscopy. The phylogeny of both species was studied using DNA sequences of nuclear and plastid regions. Chromatographic fingerprints, focusing on the major active compound oxyresveratrol, were identified using high-performance liquid chromatography. According to our current study, phylogenetic evidence showed that some samples of both species were clustered together in the same clade and phytochemical fingerprints were almost identical. These results are valuable data for taxonomic revision in the near future and reveal the possible utilization of A. thailandicus as a new material source of oxyresveratrol in the pharmaceutical industry.

5.
PhytoKeys ; 125: 1-112, 2019.
Article in English | MEDLINE | ID: mdl-31303810

ABSTRACT

The Tribe Wisterieae (Zhu 1994), founded on the single genus Wisteria, is emended and recircumscribed based on morphology and data from nuclear ITS and ndhJ-trnF, matK and rbcL chloroplast DNA sequences. This newly enlarged tribe comprises 36 species and 9 infraspecific taxa within 13 described genera. Six genera are new, two are reinstated and five were previously placed in Tribe Millettieae. The genus Adinobotrys is also reinstated comprising two species including the new combination A.vastus. Other reinstated genera include Whitfordiodendron, with four species, and Padbruggea, with three species, including the reinstatement of P.filipes and the new combination P.filipesvar.tomentosa. The existing genera Afgekia, Callerya, Endosamara (with the new combination E.racemosavar.pallida), Sarcodum and Wisteria, with the new combinations W.frutescenssubsp.macrostachya are evaluated. The new genera comprise three Australasian species in Austrocallerya: A.australis, A.megasperma and A.pilipes; Wisteriopsis with five species from east Asia has six new combinations: W.japonica, W.kiangsiensis, W.championii, W.eurybotrya, W.reticulata and W.reticulatavar.stenophylla. Two species comprise the new Thai genus Kanburia: K.tenasserimensis and K.chlorantha. Nanhaia comprises the two species: N.fordii and N.speciosa and the monotypic genera Sigmoidala and Serawaia are based respectively on the species S.kityana and S.strobilifera. Lectotypes are designated for the names Adinobotrysfilipes, A.myrianthus, Millettiabonatiana, Millettiabracteosa, Millettiachampionii, Millettiacinerea, Millettiadielsiana, Millettiakityana, M.maingayi, Millettianitida, Millettiaoocarpa, Millettiapurpurea, M.reticulata, M.reticulatavar.stenophylla, Padbruggeadasyphylla, Pterocarpusaustralis, Robiniaracemosa, Whitfordiodendronscandens, W.sumatranum and Wisteriapallida. A neotype is designated for the name Millettialeiogyna.

6.
Am J Bot ; 99(11): 1793-808, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23144360

ABSTRACT

PREMISE OF THE STUDY: Palaeotropic Derris-like taxa (family Fabaceae, tribe Millettieae) comprise 6-9 genera. They are well known as important sources of rotenone toxin, which are used as organic insecticide and fish poison. However, their phylogenetic relationships and classification are still problematic due to insufficient sampling and high morphological variability. METHODS: Fifty species of palaeotropic Derris-like taxa were sampled, which is more than in former studies. Three chloroplast genes (trnK-matK, trnL-F IGS, and psbA-trnH IGS) and nuclear ribosomal ITS /5.8S were analyzed using parsimony and Bayesian methods. KEY RESULTS: Parsimony and Bayesian analyses of individual and combined markers show more or less similar tree topologies (only varying in terminal branches). The old-world monophyletic genera Aganope, Brachypterum, and Leptoderris are distinct from Derris s.s., and their generic status is here confirmed. Aganope may be classified into two or three subgeneric taxa. Paraderris has to be included in Derris s.s. to form a monophyletic group. The genera Philenoptera, Deguelia, and Lonchocarpus are monophyletic and distinct from each other and clearly separate from Derris s.s. Morphologically highly similar species of Derris s.s. are shown to be unrelated. Our study shows that previous infrageneric classifications of Derris are incorrect. Paraderris elliptica may contain several cryptic lineages that need further investigation. CONCLUSIONS: The concept of the genus Derris s.s. should be reorganized with a new generic circumscription by including Paraderris but excluding Brachypterum. Synapomorphic morphological features will be examined in future studies, and the status of the newly defined Derris and its closely related taxa will be formalized.


Subject(s)
Cell Nucleus/genetics , Fabaceae/genetics , Genes, Chloroplast/genetics , Phylogeny , Bayes Theorem , DNA, Chloroplast/chemistry , DNA, Chloroplast/genetics , DNA, Plant/chemistry , DNA, Plant/genetics , Fabaceae/classification , Genes, Plant/genetics , Molecular Sequence Data , Sequence Analysis, DNA , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL