Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 143
1.
Front Immunol ; 15: 1352022, 2024.
Article En | MEDLINE | ID: mdl-38698856

The complement system is an innate immune mechanism against microbial infections. It involves a cascade of effector molecules that is activated via classical, lectin and alternative pathways. Consequently, many pathogens bind to or incorporate in their structures host negative regulators of the complement pathways as an evasion mechanism. Factor H (FH) is a negative regulator of the complement alternative pathway that protects "self" cells of the host from non-specific complement attack. FH has been shown to bind viruses including human influenza A viruses (IAVs). In addition to its involvement in the regulation of complement activation, FH has also been shown to perform a range of functions on its own including its direct interaction with pathogens. Here, we show that human FH can bind directly to IAVs of both human and avian origin, and the interaction is mediated via the IAV surface glycoprotein haemagglutinin (HA). HA bound to common pathogen binding footprints on the FH structure, complement control protein modules, CCP 5-7 and CCP 15-20. The FH binding to H1 and H3 showed that the interaction overlapped with the receptor binding site of both HAs, but the footprint was more extensive for the H3 HA than the H1 HA. The HA - FH interaction impeded the initial entry of H1N1 and H3N2 IAV strains but its impact on viral multicycle replication in human lung cells was strain-specific. The H3N2 virus binding to cells was significantly inhibited by preincubation with FH, whereas there was no alteration in replicative rate and progeny virus release for human H1N1, or avian H9N2 and H5N3 IAV strains. We have mapped the interaction between FH and IAV, the in vivo significance of which for the virus or host is yet to be elucidated.


Complement Factor H , Hemagglutinin Glycoproteins, Influenza Virus , Influenza A virus , Influenza, Human , Protein Binding , Humans , Complement Factor H/metabolism , Complement Factor H/immunology , Animals , Influenza, Human/immunology , Influenza, Human/virology , Influenza, Human/metabolism , Influenza A virus/immunology , Influenza A virus/physiology , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Binding Sites , Influenza in Birds/virology , Influenza in Birds/immunology , Influenza in Birds/metabolism , Birds/virology , Host-Pathogen Interactions/immunology , Influenza A Virus, H3N2 Subtype/immunology , Influenza A Virus, H9N2 Subtype/immunology
2.
Front Immunol ; 14: 1200725, 2023.
Article En | MEDLINE | ID: mdl-37359546

Purpose: Polymorphisms in complement genes are risk-associated for age-related macular degeneration (AMD). Functional analysis revealed a common deficiency to control the alternative complement pathway by risk-associated gene polymorphisms. Thus, we investigated the levels of terminal complement complex (TCC) in the plasma of wet AMD patients with defined genotypes and the impact of the complement activation of their plasma on second-messenger signaling, gene expression, and cytokine/chemokine secretion in retinal pigment epithelium (RPE) cells. Design: Collection of plasma from patients with wet AMD (n = 87: 62% female and 38% male; median age 77 years) and controls (n = 86: 39% female and 61% male; median age 58 years), grouped for risk factor smoking and genetic risk alleles CFH 402HH and ARMS2 rs3750846, determination of TCC levels in the plasma, in vitro analysis on RPE function during exposure to patients' or control plasma as a complement source. Methods: Genotyping, measurement of TCC concentrations, ARPE-19 cell culture, Ca2+ imaging, gene expression by qPCR, secretion by multiplex bead analysis of cell culture supernatants. Main outcome measures: TCC concentration in plasma, intracellular free Ca2+, relative mRNA levels, cytokine secretion. Results: TCC levels in the plasma of AMD patients were five times higher than in non-AMD controls but did not differ in plasma from carriers of the two risk alleles. Complement-evoked Ca2+ elevations in RPE cells differed between patients and controls with a significant correlation between TCC levels and peak amplitudes. Comparing the Ca2+ signals, only between the plasma of smokers and non-smokers, as well as heterozygous (CFH 402YH) and CFH 402HH patients, revealed differences in the late phase. Pre-stimulation with complement patients' plasma led to sensitization for complement reactions by RPE cells. Gene expression for surface molecules protective against TCC and pro-inflammatory cytokines increased after exposure to patients' plasma. Patients' plasma stimulated the secretion of pro-inflammatory cytokines in the RPE. Conclusion: TCC levels were higher in AMD patients but did not depend on genetic risk factors. The Ca2+ responses to patients' plasma as second-messenger represent a shift of RPE cells to a pro-inflammatory phenotype and protection against TCC. We conclude a substantial role of high TCC plasma levels in AMD pathology.


Complement Membrane Attack Complex , Macular Degeneration , Male , Female , Humans , Complement Membrane Attack Complex/genetics , Complement Factor H/metabolism , Macular Degeneration/pathology , Genotype , Cytokines/genetics
3.
Front Immunol ; 13: 1008294, 2022.
Article En | MEDLINE | ID: mdl-36451836

Atypical hemolytic-uremic syndrome (aHUS) is a severe thrombotic microangiopathy in which kidney involvement is common. aHUS can be due to either genetic or acquired abnormalities, with most abnormalities affecting the alternative complement pathway. Several genetic factors/alterations can drive the clinical presentation, therapeutic response, and risk of recurrence, especially recurrence following kidney transplantation. We report here the case of a 22-year-old man who developed a severe form of aHUS. Renal biopsy revealed thrombotic microangiopathy and features of chronic renal damage. Despite two eculizumab infusions, the patient remained dialysis dependent. Two novel rare variants, c.109G>A (p.E37K) and c.159 C>A (p.Y53*), were identified in the factor H-related 2 (FHR2) gene, and western blot analysis revealed a significant reduction in the level of FHR2 protein in the patient's serum. Although FHR2 involvement in complement 3 glomerulopathy has been reported previously, a role for FRH2 as a complement modulator has not yet been definitively shown. In addition, no cases of aHUS in individuals with FHR2 variants have been reported. Given the role of FHRs in the complement system and the fact that this patient was a candidate for a kidney transplant, we studied the relevance of low FHR2 plasma levels through a set of functional in vitro assays. The aim of our work was to determine if low FHR2 plasma levels could influence complement control at the endothelial surface with a view to identifying a therapeutic approach tailored to this specific patient. Interestingly, we observed that low FHR2 levels in the patient's serum could induce complement activation, as well as C5b-9 deposition on human endothelial cells, and affected cell morphology. As C5b-9 deposition is a prerequisite for endothelial cell damage, these results suggest that extremely low FHR2 plasma levels increase the risk of aHUS. Given their ability to reduce C5b-9 deposition, recombinant FHR2 and eculizumab were tested in vitro and found to inhibit hemolysis and endothelial cell surface damage. Both molecules showed effective and comparable profiles. Based on these results, the patient underwent a kidney transplant, and received eculizumab as induction and maintenance therapy. Five years after transplantation, the patient remains in good general health, with stable graft function and no evidence of disease recurrence. To our knowledge, this is first reported case of an aHUS patient carrying FHR2 mutations and provides an example of a translational therapeutic approach in kidney transplantation.


Atypical Hemolytic Uremic Syndrome , Kidney Transplantation , Thrombotic Microangiopathies , Male , Humans , Young Adult , Adult , Atypical Hemolytic Uremic Syndrome/genetics , Kidney Transplantation/adverse effects , Complement Membrane Attack Complex , Endothelial Cells , Translational Science, Biomedical
4.
Mol Immunol ; 150: 90-98, 2022 10.
Article En | MEDLINE | ID: mdl-36027818

Paul Ehrlich was a pioneering Immunobiologist and physician who coined the term 'complement' in the year 1899. He was a leading visionary scientist who worked in the late 19th and early 20th centuries in Berlin and Frankfurt. He received numerous awards and honors for his substantial contributions to immunobiology and medicine, including the identification of complement, and he received the Nobel Prize in Physiology or Medicine in 1908 in recognition of his work on immunity. During his clinical work, Paul Ehrlich treated a patient with paroxysmal hemoglobinuria and reported his diagnostic approaches, including those related to erythrocyte lysis and microscopic cell analysis, to the Verein für Innere Medicine/Society of Internal Medicine, Berlin. Paroxysmal nocturnal hemoglobinuria was shown to be a complement-mediated disease; treatment of this disease with the complement inhibitor Eculzimab/Soliris was approved by the European Medicines Agency in 2003 and by the United States Food and Drug Administration in 2007.


Nobel Prize , Physicians , Complement Inactivating Agents , History, 20th Century , Humans , Male , United States
5.
Sci Rep ; 12(1): 5818, 2022 04 06.
Article En | MEDLINE | ID: mdl-35388026

Sialic acids as the terminal caps of the cellular glycocalyx play an essential role in self-recognition and were shown to modulate complement processes via interaction between α2,3-linked sialic acids and complement factor H. Previously, it was suggested that low molecular weight α2,8-linked polysialic acid (polySia avDP20) interferes with complement activation, but the exact molecular mechanism is still unclear. Here, we show that soluble polySia avDP20 (molecular weight of ~ 6 kDa) reduced the binding of serum-derived alternative pathway complement activator properdin to the cell surface of lesioned Hepa-1c1c7 and PC-12 neuroblastoma cells. Furthermore, polySia avDP20 added to human serum blocked the alternative complement pathway triggered by plate-bound lipopolysaccharides. Interestingly, no inhibitory effect was observed with monosialic acid or oligosialic acid with a chain length of DP3 and DP5. In addition, polySia avDP20 directly bound properdin, but not complement factor H. These data show that soluble polySia avDP20 binds properdin and reduces the alternative complement pathway activity. Results strengthen the previously described concept of self-recognition of sialylation as check-point control of complement activation in innate immunity.


Complement Pathway, Alternative , Properdin , Humans , Molecular Weight , Properdin/metabolism , Sialic Acids/metabolism
6.
J Bacteriol ; 204(1): e0018421, 2022 01 18.
Article En | MEDLINE | ID: mdl-34633872

Staphylococcus aureus is an opportunistic pathogen that can cause life-threatening infections, particularly in immunocompromised individuals. The high-level virulence of S. aureus largely relies on its diverse and variable collection of virulence factors and immune evasion proteins, including the six serine protease-like proteins SplA to SplF. Spl proteins are expressed by most clinical isolates of S. aureus, but little is known about the molecular mechanisms by which these proteins modify the host's immune response for the benefit of the bacteria. Here, we identify SplB as a protease that inactivates central human complement proteins, i.e., C3, C4, and the activation fragments C3b and C4b, by preferentially cleaving their α-chains. SplB maintained its proteolytic activity in human serum, degrading C3 and C4. SplB further cleaved the components of the terminal complement pathway, C5, C6, C7, C8, and C9. In contrast, the important soluble human complement regulators factor H and C4b-binding protein (C4BP), as well as C1q, were left intact. Thereby, SplB reduced C3b-mediated opsonophagocytosis by human neutrophils as well as C5b-9 deposition on the bacterial surface. In conclusion, we identified the first physiological substrates of the S. aureus extracellular protease SplB. This enzyme inhibits all three complement pathways and blocks opsonophagocytosis. Thus, SplB can be considered a novel staphylococcal complement evasion protein. IMPORTANCE The success of bacterial pathogens in immunocompetent humans depends on the control and inactivation of host immunity. S. aureus, like many other pathogens, efficiently blocks host complement attack early in infection. Aiming to understand the role of the S. aureus-encoded orphan proteases of the Spl operon, we asked whether these proteins play a role in immune escape. We found that SplB inhibits all three complement activation pathways as well as the lytic terminal complement pathway. This blocks the opsonophagocytosis of the bacteria by neutrophils. We also clarified the molecular mechanisms: SplB cleaves the human complement proteins C3, C4, C5, C6, C7, C8, and C9 as well as factor B but not the complement inhibitors factor H and C4BP. Thus, we identify the first physiological substrates of the extracellular protease SplB of S. aureus and characterize SplB as a novel staphylococcal complement evasion protein.


Bacterial Proteins/metabolism , Complement System Proteins/metabolism , Opsonization/physiology , Peptide Hydrolases/metabolism , Staphylococcus aureus/enzymology , Bacterial Proteins/genetics , Gene Expression Regulation, Bacterial , Gene Expression Regulation, Enzymologic , Humans , Peptide Hydrolases/genetics , Staphylococcus aureus/metabolism
7.
Sci Rep ; 11(1): 22511, 2021 11 18.
Article En | MEDLINE | ID: mdl-34795372

Atherosclerotic cardiovascular disease (ACVD) is a lipid-driven inflammatory disease and one of the leading causes of death worldwide. Lipid deposits in the arterial wall lead to the formation of plaques that involve lipid oxidation, cellular necrosis, and complement activation, resulting in inflammation and thrombosis. The present study found that homozygous deletion of the CFHR1 gene, which encodes the plasma complement protein factor H-related protein 1 (FHR-1), was protective in two cohorts of patients with ACVD, suggesting that FHR-1 accelerates inflammation and exacerbates the disease. To test this hypothesis, FHR-1 was isolated from human plasma and was found to circulate on extracellular vesicles and to be deposited in atherosclerotic plaques. Surface-bound FHR-1 induced the expression of pro-inflammatory cytokines and tissue factor in both monocytes and neutrophils. Notably, plasma concentrations of FHR-1, but not of factor H, were significantly (p < 0.001) elevated in patients with ACVD, and correlated with the expression of the inflammation markers C-reactive protein, apolipoprotein serum amyloid protein A, and neopterin. FHR-1 expression also significantly correlated with plasma concentrations of low-density lipoprotein (LDL) (p < 0.0001) but not high-density lipoprotein (HDL). Taken together, these findings suggest that FHR-1 is associated with ACVD.


Atherosclerosis/metabolism , Cardiovascular Diseases/metabolism , Complement C3b Inactivator Proteins/physiology , Gene Expression Regulation , Aged , Cardiology , Chromosome Deletion , Complement Activation , Complement C3b Inactivator Proteins/biosynthesis , Complement C3b Inactivator Proteins/genetics , Female , Gene Expression Profiling , Homozygote , Humans , Inflammation , Lipids/chemistry , Male , Middle Aged , Necrosis , Oxygen/chemistry , Sequence Deletion
8.
Cell Tissue Res ; 385(2): 355-370, 2021 Aug.
Article En | MEDLINE | ID: mdl-34613485

Complement is an evolutionarily conserved system which is important in the defense against microorganisms and also in the elimination of modified or necrotic elements of the body. Complement is activated in a cascade type manner and activation and all steps of cascade progression are tightly controlled and regulatory interleaved with many processes of inflammatory machinery. Overshooting of the complement system due to dysregulation can result in the two prototypes of primary complement mediated renal diseases: C3 glomerulopathy and thrombotic microangiopathy. Apart from these, complement also is highly activated in many other inflammatory native kidney diseases, such as membranous nephropathy, ANCA-associated necrotizing glomerulonephritis, and IgA nephropathy. Moreover, it likely plays an important role also in the transplant setting, such as in antibody-mediated rejection or in hematopoietic stem cell transplant associated thrombotic microangiopathy. In this review, these glomerular disorders are discussed with regard to the role of complement in their pathogenesis. The consequential, respective clinical trials for complement inhibitory therapy strategies for these diseases are described.


Kidney Glomerulus/pathology , Kidney/pathology , Animals , Humans
9.
Sci Rep ; 11(1): 1701, 2021 01 18.
Article En | MEDLINE | ID: mdl-33462258

The PspC and Hic proteins of Streptococcus pneumoniae are some of the most variable microbial immune evasion proteins identified to date. Due to structural similarities and conserved binding profiles, it was assumed for a long time that these pneumococcal surface proteins represent a protein family comprised of eleven subgroups. Recently, however, the evaluation of more proteins revealed a greater diversity of individual proteins. In contrast to previous assumptions a pattern evaluation of six PspC and five Hic variants, each representing one of the previously defined subgroups, revealed distinct structural and likely functionally regions of the proteins, and identified nine new domains and new domain alternates. Several domains are unique to PspC and Hic variants, while other domains are also present in other virulence factors encoded by pneumococci and other bacterial pathogens. This knowledge improved pattern evaluation at the level of full-length proteins, allowed a sequence comparison at the domain level and identified domains with a modular composition. This novel strategy increased understanding of individual proteins variability and modular domain composition, enabled a structural and functional characterization at the domain level and furthermore revealed substantial structural differences between PspC and Hic proteins. Given the exceptional genomic diversity of the multifunctional PspC and Hic proteins a detailed structural and functional evaluation need to be performed at the strain level. Such knowledge will also be useful for molecular strain typing and characterizing PspC and Hic proteins from new clinical S. pneumoniae strains.


Bacterial Proteins/chemistry , Carrier Proteins/chemistry , Streptococcus pneumoniae/metabolism , Bacterial Proteins/classification , Bacterial Proteins/genetics , Carrier Proteins/classification , Carrier Proteins/genetics , Humans , Mutation , Phylogeny , Pneumococcal Infections/immunology , Pneumococcal Infections/microbiology , Pneumococcal Infections/pathology , Protein Binding , Protein Domains , Sequence Analysis, Protein , Streptococcus pneumoniae/isolation & purification
10.
mBio ; 13(1): e0356321, 2021 02 22.
Article En | MEDLINE | ID: mdl-35132877

In response to infections, human immune cells release extracellular vesicles (EVs) that carry a situationally adapted cocktail of proteins and nucleic acids, including microRNAs (miRNAs), to coordinate the immune response. In this study, we identified hsa-miR-21-5p and hsa-miR-24-3p as the most common miRNAs in exosomes released by human monocytes in response to the pathogenic fungus Candida albicans. Functional analysis of miRNAs revealed that hsa-miR-24-3p, but not hsa-miR-21-5p, acted across species and kingdoms, entering C. albicans and inducing fungal cell growth by inhibiting translation of the cyclin-dependent kinase inhibitor Sol1. Packaging of hsa-miR-24-3p into monocyte exosomes required binding of fungal soluble ß-glucan to complement receptor 3 (CR3) and binding of mannan to Toll-like receptor 4 (TLR4), resulting in receptor colocalization. Together, our in vitro and in vivo findings reveal a novel cross-species evasion mechanism by which C. albicans exploits a human miRNA to promote fungal growth and survival in the host. IMPORTANCE Over the last decade, communication between immune cells by extracellular vesicle-associated miRNAs has emerged as an important regulator of the coordinated immune response. Therefore, a thorough understanding of the conversation occurring via miRNAs, especially during infection, may provide novel insights into both the host reaction to the microbe as well as the microbial response. This study provides evidence that the pathogenic fungus C. albicans communicates with human monocytes and induces the release of a human miRNA that promotes fungal growth. This mechanism represents an unexpected cross-species interaction and implies that an inhibition of specific miRNAs offers new possibilities for the treatment of human fungal infections.


Exosomes , MicroRNAs , Humans , Candida albicans/genetics , Monocytes/metabolism , MicroRNAs/genetics , Exosomes/metabolism
11.
Br J Pharmacol ; 178(14): 2823-2831, 2021 07.
Article En | MEDLINE | ID: mdl-33085794

Factor H-related protein 1 (FHR-1) is a member of the factor H protein family, which is involved in regulating innate immune complement reactions. Genetic modification of the encoding gene, CFHR1 on human chromosome 1, is involved in diseases such as age-related macular degeneration, C3 glomerulopathy and atypical haemolytic uraemic syndrome, indicating an important role for FHR-1 in human health. Recent research data demonstrate that FHR-1 levels increase in IgA nephropathy and anti-neutrophilic cytoplasmic autoantibodies (ANCA) vasculitis and that FHR-1 induces strong inflammation in monocytes on necrotic-type surfaces, suggesting a complement-independent role. These new results increase our knowledge about the role of this complement protein in pathology and provide a new therapeutic target, particularly in the context of inflammatory diseases induced by necrosis. This review summarizes current knowledge about FHR-1 and discusses its role in complement reactions and inflammation. LINKED ARTICLES: This article is part of a themed issue on Canonical and non-canonical functions of the complement system in health and disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.14/issuetoc.


Complement Factor H , Complement System Proteins , Blood Proteins , Humans , Inflammation , Necrosis
12.
Eur J Immunol ; 51(2): 490-493, 2021 02.
Article En | MEDLINE | ID: mdl-33022775

We show that the intraerythrocytic stages of the malaria parasite Plasmodium falciparum bind plasminogen and mediate its conversion into plasmin to inactivate parasite-bound C3b. This complement evasion mechanism counteracts terminal complex formation and hence promotes parasite survival in human blood.


Complement C3b/immunology , Immune Evasion/immunology , Malaria, Falciparum/immunology , Plasmodium falciparum/immunology , Host-Parasite Interactions/immunology , Humans , Malaria, Falciparum/parasitology
13.
Clin Nephrol ; 94(4): 197-206, 2020 Oct.
Article En | MEDLINE | ID: mdl-32870147

C3 glomerulonephritis (C3GN) is a rare but severe form of kidney disease caused by fluid-phase dysregulation of the alternative complement pathway. Causative mutations in complement regulating genes as well as auto-immune forms of C3GN have been described. However, therapy and prognosis in individual patients remain a matter of debate and long-term data are scarce. This also applies for the management of transplant patients as disease recurrence post-transplant is frequent. Here, we depict the clinical courses of two sisters with the unique combination of an identical, homozygous mutation in the complement factor H (CFH) gene as well as autoantibodies with a clinical follow-up of more than 20 years. Interestingly, the sisters presented with discordant clinical courses of C3GN with normal kidney function in one (patient A) and end-stage kidney disease in the other sister (patient B). In patient B, eculizumab was administered immediately prior to and in the course after kidney transplantation, with the result of a stable graft function without any signs of disease recurrence. Comprehensive genetic work-up revealed no further disease-causing mutation in both sisters. Intriguingly, the auto-antibody profile substantially differed in both sisters: autoantibodies in patient A reduced the C3b deposition, while the antibodies identified in patient B increased complement activation and deposition of split products. This study underlines the concept of a personalized-medicine approach in complement-associated diseases after thorough evaluation of the individual risk profile in each patient.


Autoantibodies/blood , Complement C3/metabolism , Complement Factor H/genetics , Glomerulonephritis , Female , Humans , Kidney/physiology , Kidney/physiopathology , Kidney Failure, Chronic , Mutation/genetics
15.
Nat Commun ; 11(1): 2331, 2020 05 11.
Article En | MEDLINE | ID: mdl-32393780

Extracellular vesicles have an important function in cellular communication. Here, we show that human and mouse monocytes release TGF-ß1-transporting vesicles in response to the pathogenic fungus Candida albicans. Soluble ß-glucan from C. albicans binds to complement receptor 3 (CR3, also known as CD11b/CD18) on monocytes and induces the release of TGF-ß1-transporting vesicles. CR3-dependence is demonstrated using CR3-deficient (CD11b knockout) monocytes generated by CRISPR-CAS9 genome editing and isolated from CR3-deficient (CD11b knockout) mice. These vesicles reduce the pro-inflammatory response in human M1-macrophages as well as in whole blood. Binding of the vesicle-transported TGF-ß1 to the TGF-ß receptor inhibits IL1B transcription via the SMAD7 pathway in whole blood and induces TGFB1 transcription in endothelial cells, which is resolved upon TGF-ß1 inhibition. Notably, human complement-opsonized apoptotic bodies induce production of similar TGF-ß1-transporting vesicles in monocytes, suggesting that the early immune response might be suppressed through this CR3-dependent anti-inflammatory vesicle pathway.


Immunomodulation , Macrophage-1 Antigen/metabolism , Monocytes/metabolism , Transforming Growth Factor beta1/metabolism , Transport Vesicles/metabolism , Animals , Apoptosis , Candida albicans/metabolism , Candida albicans/ultrastructure , Down-Regulation , Dynamic Light Scattering , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Inflammation/pathology , Interleukin-6/genetics , Interleukin-6/metabolism , Macrophages/metabolism , Mice, Inbred C57BL , Models, Biological , Monocytes/microbiology , Monocytes/ultrastructure , Protein Transport , Solubility , Transcription, Genetic , Up-Regulation , beta-Glucans/metabolism
16.
Proc Natl Acad Sci U S A ; 117(18): 9942-9951, 2020 05 05.
Article En | MEDLINE | ID: mdl-32321835

Genetic variants within complement factor H (CFH), a major alternative complement pathway regulator, are associated with the development of age-related macular degeneration (AMD) and other complementopathies. This is explained with the reduced binding of CFH or its splice variant factor H-like protein 1 (FHL-1) to self-ligands or altered self-ligands (e.g., malondialdehyde [MDA]-modified molecules) involved in homeostasis, thereby causing impaired complement regulation. Considering the critical role of CFH in inhibiting alternative pathway activation on MDA-modified surfaces, we performed an unbiased genome-wide search for genetic variants that modify the ability of plasma CFH to bind MDA in 1,830 individuals and characterized the mechanistic basis and the functional consequences of this. In a cohort of healthy individuals, we identified rs1061170 in CFH and the deletion of CFHR3 and CFHR1 as dominant genetic variants that modify CFH/FHL-1 binding to MDA. We further demonstrated that FHR1 and FHR3 compete with CFH for binding to MDA-epitopes and that FHR1 displays the highest affinity toward MDA-epitopes compared to CFH and FHR3. Moreover, FHR1 bound to MDA-rich areas on necrotic cells and prevented CFH from mediating its cofactor activity on MDA-modified surfaces, resulting in enhanced complement activation. These findings provide a mechanistic explanation as to why the deletion of CFHR3 and CFHR1 is protective in AMD and highlight the importance of genetic variants within the CFH/CFHR3/CFHR1 locus in the recognition of altered-self in tissue homeostasis.


Blood Proteins/genetics , Complement C3b Inactivator Proteins/genetics , Macular Degeneration/genetics , Aged , Complement Factor H/genetics , Epitopes/genetics , Female , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Macular Degeneration/pathology , Male , Malondialdehyde/metabolism , Middle Aged , Polymorphism, Single Nucleotide/genetics , Protein Binding
17.
J Am Soc Nephrol ; 31(2): 241-256, 2020 02.
Article En | MEDLINE | ID: mdl-31980588

Sequence and copy number variations in the human CFHR-Factor H gene cluster comprising the complement genes CFHR1, CFHR2, CFHR3, CFHR4, CFHR5, and Factor H are linked to the human kidney diseases atypical hemolytic uremic syndrome (aHUS) and C3 glomerulopathy. Distinct genetic and chromosomal alterations, deletions, or duplications generate hybrid or mutant CFHR genes, as well as hybrid CFHR-Factor H genes, and alter the FHR and Factor H plasma repertoire. A clear association between the genetic modifications and the pathologic outcome is emerging: CFHR1, CFHR3, and Factor H gene alterations combined with intact CFHR2, CFHR4, and CFHR5 genes are reported in atypical hemolytic uremic syndrome. But alterations in each of the five CFHR genes in the context of an intact Factor H gene are described in C3 glomerulopathy. These genetic modifications influence complement function and the interplay of the five FHR proteins with each other and with Factor H. Understanding how mutant or hybrid FHR proteins, Factor H::FHR hybrid proteins, and altered Factor H, FHR plasma profiles cause pathology is of high interest for diagnosis and therapy.


Atypical Hemolytic Uremic Syndrome/genetics , Complement C3/analysis , Glomerulonephritis, Membranoproliferative/genetics , Atypical Hemolytic Uremic Syndrome/etiology , Complement Factor H/chemistry , Complement Factor H/genetics , Complement Factor H/physiology , DNA Copy Number Variations , Genetic Predisposition to Disease , Genetic Variation , Glomerulonephritis, Membranoproliferative/etiology , Humans , Kidney/pathology , Multigene Family
18.
Front Immunol ; 10: 2573, 2019.
Article En | MEDLINE | ID: mdl-31824478

The opportunistic fungal pathogen Aspergillus fumigatus can cause severe infections, particularly in immunocompromised individuals. Upon infection, A. fumigatus faces the powerful and directly acting immune defense of the human host. The mechanisms on how A. fumigatus evades innate immune attack and complement are still poorly understood. Here, we identify A. fumigatus enolase, AfEno1, which was also characterized as fungal allergen, as a surface ligand for human plasma complement regulators. AfEno1 binds factor H, factor-H-like protein 1 (FHL-1), C4b binding protein (C4BP), and plasminogen. Factor H attaches to AfEno1 via two regions, via short conserved repeats (SCRs) 6-7 and 19-20, and FHL-1 contacts AfEno1 via SCRs 6-7. Both regulators when bound to AfEno1 retain cofactor activity and assist in C3b inactivation. Similarly, the classical pathway regulator C4BP binds to AfEno1 and bound to AfEno1; C4BP assists in C4b inactivation. Plasminogen which binds to AfEno1 via lysine residues is accessible for the tissue-type plasminogen activator (tPA), and active plasmin cleaves the chromogenic substrate S2251, degrades fibrinogen, and inactivates C3 and C3b. Plasmin attached to swollen A. fumigatus conidia damages human A549 lung epithelial cells, reduces the cellular metabolic activity, and induces cell retraction, which results in exposure of the extracellular matrix. Thus, A. fumigatus AfEno1 is a moonlighting protein and virulence factor which recruits several human regulators. The attached human regulators allow the fungal pathogen to control complement at the level of C3 and to damage endothelial cell layers and tissue components.


Aspergillus fumigatus/enzymology , Complement C4b-Binding Protein/metabolism , Complement Factor H/metabolism , Fungal Proteins/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , LIM Domain Proteins/metabolism , Muscle Proteins/metabolism , Phosphopyruvate Hydratase/metabolism , Plasminogen/metabolism , Alveolar Epithelial Cells/immunology , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/microbiology , Aspergillosis/immunology , Aspergillosis/metabolism , Aspergillosis/microbiology , Aspergillus fumigatus/immunology , Cell Line , Complement Factor H/immunology , Fungal Proteins/immunology , Host-Pathogen Interactions/immunology , Humans , Immune Evasion , Kinetics , Phosphopyruvate Hydratase/immunology , Protein Binding
19.
Front Immunol ; 10: 2166, 2019.
Article En | MEDLINE | ID: mdl-31611870

Defective complement action is a cause of several human glomerular diseases including atypical hemolytic uremic syndrome (aHUS), anti-neutrophil cytoplasmic antibody mediated vasculitis (ANCA), C3 glomerulopathy, IgA nephropathy, immune complex membranoproliferative glomerulonephritis, ischemic reperfusion injury, lupus nephritis, membranous nephropathy, and chronic transplant mediated glomerulopathy. Here we summarize ongoing clinical trials of complement inhibitors in nine glomerular diseases and show which inhibitors are used in trials for these renal disorders (http://clinicaltrials.gov).


Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis , Atypical Hemolytic Uremic Syndrome , Complement Inactivating Agents/therapeutic use , Glomerulonephritis , Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/drug therapy , Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/immunology , Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/pathology , Atypical Hemolytic Uremic Syndrome/drug therapy , Atypical Hemolytic Uremic Syndrome/immunology , Atypical Hemolytic Uremic Syndrome/pathology , Clinical Trials as Topic , Complement Activation/drug effects , Complement Activation/immunology , Glomerulonephritis/drug therapy , Glomerulonephritis/immunology , Glomerulonephritis/pathology , Humans
20.
Nat Commun ; 10(1): 2961, 2019 07 04.
Article En | MEDLINE | ID: mdl-31273197

Persistent inflammation is a hallmark of many human diseases, including anti-neutrophil cytoplasmic antibody-associated vasculitis (AAV) and atherosclerosis. Here, we describe a dominant trigger of inflammation: human serum factor H-related protein FHR1. In vitro, this protein selectively binds to necrotic cells via its N-terminus; in addition, it binds near necrotic glomerular sites of AAV patients and necrotic areas in atherosclerotic plaques. FHR1, but not factor H, FHR2 or FHR3 strongly induces inflammasome NLRP3 in blood-derived human monocytes, which subsequently secrete IL-1ß, TNFα, IL-18 and IL-6. FHR1 triggers the phospholipase C-pathway via the G-protein coupled receptor EMR2 independent of complement. Moreover, FHR1 concentrations of AAV patients negatively correlate with glomerular filtration rates and associate with the levels of inflammation and progressive disease. These data highlight an unexpected role for FHR1 during sterile inflammation, may explain why FHR1-deficiency protects against certain diseases, and identifies potential targets for treatment of auto-inflammatory diseases.


Complement C3b Inactivator Proteins/metabolism , Inflammasomes/metabolism , Monocytes/metabolism , Monocytes/pathology , Vascular Diseases/metabolism , Vascular Diseases/pathology , C-Reactive Protein/metabolism , Complement System Proteins/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Immobilized Proteins/metabolism , Inflammation/metabolism , Inflammation/pathology , Inflammation Mediators/metabolism , Interleukin-1beta/metabolism , Lipoproteins, LDL/metabolism , Malondialdehyde/metabolism , Models, Biological , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Necrosis , Protein Binding , Receptors, G-Protein-Coupled/metabolism , Serum/metabolism , Type C Phospholipases/metabolism
...