Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Negl Trop Dis ; 18(6): e0012243, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38865422

ABSTRACT

Aedes albopictus, also known as the Asian tiger mosquito, is indigenous to the tropical forests of Southeast Asia. Ae. albopictus is expanding across the globe at alarming rates, raising concern over the transmission of mosquito-borne diseases, such as dengue, West Nile fever, yellow fever, and chikungunya fever. Since Ae. albopictus was reported in Houston (Harris County, Texas) in 1985, this species has rapidly expanded to at least 32 states across the United States. Public health efforts aimed at controlling Ae. albopictus, including surveillance and adulticide spraying operations, occur regularly in Harris County. Despite rotation of insecticides to mitigate the development of resistance, multiple mosquito species including Culex quinquefasciatus and Aedes aegypti in Harris County show organophosphate and pyrethroid resistance. Aedes albopictus shows relatively low resistance levels as compared to Ae. aegypti, but kdr-mutation and the expression of detoxification genes have been reported in Ae. albopictus populations elsewhere. To identify potential candidate detoxification genes contributing to metabolic resistance, we used RNA sequencing of field-collected malathion-resistant and malathion-susceptible, and laboratory-maintained susceptible colonies of Ae. albopictus by comparing the relative expression of transcripts from three major detoxification superfamilies involved in malathion resistance due to metabolic detoxification. Between these groups, we identified 12 candidate malathion resistance genes and among these, most genes correlated with metabolic detoxification of malathion, including four P450 and one alpha esterase. Our results reveal the metabolic detoxification and potential cuticular-based resistance mechanisms associated with malathion resistance in Ae. albopictus in Harris County, Texas.


Subject(s)
Aedes , Gene Expression Profiling , Insecticide Resistance , Insecticides , Malathion , Animals , Malathion/pharmacology , Aedes/genetics , Aedes/drug effects , Aedes/metabolism , Insecticide Resistance/genetics , Insecticides/pharmacology , Mosquito Vectors/genetics , Mosquito Vectors/drug effects , Mosquito Vectors/metabolism , Sequence Analysis, RNA , Transcriptome , Texas , Female , Insect Proteins/genetics , Insect Proteins/metabolism
2.
J Med Entomol ; 61(4): 861-868, 2024 07 12.
Article in English | MEDLINE | ID: mdl-38733173

ABSTRACT

Anopheles coluzzii (Coetzee & Wilkerson) and its sibling species Anopheles gambiae s.s. (Giles) are highly anthropophilic and among the major malaria vectors in sub-Saharan Africa. Mosquitoes use various senses to find hosts, but rely primarily on olfaction. Therefore, the mosquito olfactory system has been studied extensively, including a variety of studies comparing chemosensory gene expression between An. coluzzii and its zoophilic sibling species Anopheles quadriannulatus (Theobald). These studies revealed species-specific chemosensory gene expression in the antennae and maxillary palps, which raised the question of a potential role for the palps in determining species-specific host preferences. To answer this question, we mechanically ablated the antennae, maxillary palps, and labella, and ran both control and ablated mosquitoes through a dual-port olfactometer. While we aimed to identify the organs responsible for vertebrate host choice, the ablated mosquitoes exclusively responded to human odor, so we were unable to do so. However, we were able to refine our understanding of the roles of these organs in host-seeking activation (leaving the release cage) as well as odor response (entering an odor port). As expected, the antennae are the most important organs to both behaviors: activation was roughly halved and vertebrate odor response was abolished in antennae-ablated mosquitoes. Maxillary palp ablation had little impact on activation, but reduced odor response to a similar degree as the exclusion of CO2. Finally, while labellar ablation dramatically reduced activation (probably associated with the inability to feed), it had little impact on odor response, suggesting that any labellar role in host choice is likely not olfactory.


Subject(s)
Anopheles , Anopheles/physiology , Animals , Female , Host-Seeking Behavior , Smell , Arthropod Antennae/physiology , Mosquito Vectors/physiology , Odorants
3.
BMC Genomics ; 25(1): 170, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38347446

ABSTRACT

BACKGROUND: This study explores the impact of disrupting the circadian clock through a Cycle gene knockout (KO) on the transcriptome of Aedes aegypti mosquitoes. The investigation aims to uncover the resulting alterations in gene expression patterns and physiological processes. RESULTS: Transcriptome analysis was conducted on Cyc knockout (AeCyc-/-) and wild-type mosquitoes at four time points in a light-dark cycle. The study identified system-driven genes that exhibit rhythmic expression independently of the core clock machinery. Cyc disruption led to altered expression of essential clock genes, affecting metabolic processes, signaling pathways, stimulus responses and immune responses. Notably, gene ontology enrichment of odorant binding proteins, indicating the clock's role in sensory perception. The absence of Cyc also impacted various regulation of metabolic and cell cycle processes was observed in all time points. CONCLUSIONS: The intricate circadian regulation in Ae. aegypti encompasses both core clock-driven and system-driven genes. The KO of Cyc gene instigated extensive gene expression changes, impacting various processes, thereby potentially affecting cellular and metabolic functions, immune responses, and sensory perception. The circadian clock's multifaceted involvement in diverse biological processes, along with its role in the mosquito's daily rhythms, forms a nexus that influences the vector's capacity to transmit diseases. These insights shed light on the circadian clock's role in shaping mosquito biology and behavior, opening new avenues for innovative disease control strategies.


Subject(s)
Aedes , Circadian Clocks , Animals , Circadian Clocks/genetics , Aedes/metabolism , Circadian Rhythm/genetics , Mosquito Vectors , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL