Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
2.
Nat Commun ; 14(1): 4454, 2023 07 24.
Article in English | MEDLINE | ID: mdl-37488123

ABSTRACT

Andes virus (ANDV) and Sin Nombre virus (SNV) are the etiologic agents of severe hantavirus cardiopulmonary syndrome (HCPS) in the Americas for which no FDA-approved countermeasures are available. Protocadherin-1 (PCDH1), a cadherin-superfamily protein recently identified as a critical host factor for ANDV and SNV, represents a new antiviral target; however, its precise role remains to be elucidated. Here, we use computational and experimental approaches to delineate the binding surface of the hantavirus glycoprotein complex on PCDH1's first extracellular cadherin repeat domain. Strikingly, a single amino acid residue in this PCDH1 surface influences the host species-specificity of SNV glycoprotein-PCDH1 interaction and cell entry. Mutation of this and a neighboring residue substantially protects Syrian hamsters from pulmonary disease and death caused by ANDV. We conclude that PCDH1 is a bona fide entry receptor for ANDV and SNV whose direct interaction with hantavirus glycoproteins could be targeted to develop new interventions against HCPS.


Subject(s)
Communicable Diseases , Orthohantavirus , RNA Viruses , Animals , Cricetinae , Point Mutation , Protocadherins , Cadherins , Mesocricetus , Syndrome
3.
Sci Transl Med ; 15(700): eadg1855, 2023 06 14.
Article in English | MEDLINE | ID: mdl-37315110

ABSTRACT

Emerging rodent-borne hantaviruses cause severe diseases in humans with no approved vaccines or therapeutics. We recently isolated a monoclonal broadly neutralizing antibody (nAb) from a Puumala virus-experienced human donor. Here, we report its structure bound to its target, the Gn/Gc glycoprotein heterodimer comprising the viral fusion complex. The structure explains the broad activity of the nAb: It recognizes conserved Gc fusion loop sequences and the main chain of variable Gn sequences, thereby straddling the Gn/Gc heterodimer and locking it in its prefusion conformation. We show that the nAb's accelerated dissociation from the divergent Andes virus Gn/Gc at endosomal acidic pH limits its potency against this highly lethal virus and correct this liability by engineering an optimized variant that sets a benchmark as a candidate pan-hantavirus therapeutic.


Subject(s)
Antibodies, Viral , Orthohantavirus , Humans , Benchmarking , Broadly Neutralizing Antibodies , Conserved Sequence
4.
Sci Transl Med ; 14(636): eabl5399, 2022 03 16.
Article in English | MEDLINE | ID: mdl-35294259

ABSTRACT

The rodent-borne hantavirus Puumala virus (PUUV) and related agents cause hemorrhagic fever with renal syndrome (HFRS) in humans. Other hantaviruses, including Andes virus (ANDV) and Sin Nombre virus, cause a distinct zoonotic disease, hantavirus cardiopulmonary syndrome (HCPS). Although these infections are severe and have substantial case fatality rates, no FDA-approved hantavirus countermeasures are available. Recent work suggests that monoclonal antibodies may have therapeutic utility. We describe here the isolation of human neutralizing antibodies (nAbs) against tetrameric Gn/Gc glycoprotein spikes from PUUV-experienced donors. We define a dominant class of nAbs recognizing the "capping loop" of Gn that masks the hydrophobic fusion loops in Gc. A subset of nAbs in this class, including ADI-42898, bound Gn/Gc complexes but not Gn alone, strongly suggesting that they recognize a quaternary epitope encompassing both Gn and Gc. ADI-42898 blocked the cell entry of seven HCPS- and HFRS-associated hantaviruses, and single doses of this nAb could protect Syrian hamsters and bank voles challenged with the highly virulent HCPS-causing ANDV and HFRS-causing PUUV, respectively. ADI-42898 is a promising candidate for clinical development as a countermeasure for both HCPS and HFRS, and its mode of Gn/Gc recognition informs the development of broadly protective hantavirus vaccines.


Subject(s)
Hantavirus Infections , Hemorrhagic Fever with Renal Syndrome , Orthohantavirus , Puumala virus , Animals , Antibodies, Neutralizing , Antibodies, Viral , Cricetinae , Epitopes , Glycoproteins , Hemorrhagic Fever with Renal Syndrome/prevention & control , Humans
5.
Front Immunol ; 12: 729851, 2021.
Article in English | MEDLINE | ID: mdl-34721393

ABSTRACT

Multiple agents in the family Filoviridae (filoviruses) are associated with sporadic human outbreaks of highly lethal disease, while others, including several recently identified agents, possess strong zoonotic potential. Although viral glycoprotein (GP)-specific monoclonal antibodies have demonstrated therapeutic utility against filovirus disease, currently FDA-approved molecules lack antiviral breadth. The development of broadly neutralizing antibodies has been challenged by the high sequence divergence among filovirus GPs and the complex GP proteolytic cleavage cascade that accompanies filovirus entry. Despite this variability in the antigenic surface of GP, all filoviruses share a site of vulnerability-the binding site for the universal filovirus entry receptor, Niemann-Pick C1 (NPC1). Unfortunately, this site is shielded in extracellular GP and only uncovered by proteolytic cleavage by host proteases in late endosomes and lysosomes, which are generally inaccessible to antibodies. To overcome this obstacle, we previously developed a 'Trojan horse' therapeutic approach in which engineered bispecific antibodies (bsAbs) coopt viral particles to deliver GP:NPC1 interaction-blocking antibodies to their endo/lysosomal sites of action. This approach afforded broad protection against members of the genus Ebolavirus but could not neutralize more divergent filoviruses. Here, we describe next-generation Trojan horse bsAbs that target the endo/lysosomal GP:NPC1 interface with pan-filovirus breadth by exploiting the conserved and widely expressed host cation-independent mannose-6-phosphate receptor for intracellular delivery. Our work highlights a new avenue for the development of single therapeutics protecting against all known and newly emerging filoviruses.


Subject(s)
Antibodies, Bispecific/pharmacology , Antiviral Agents/pharmacology , Broadly Neutralizing Antibodies/pharmacology , Ebolavirus/drug effects , Hemorrhagic Fever, Ebola/drug therapy , Lysosomes/drug effects , Niemann-Pick C1 Protein/antagonists & inhibitors , Viral Envelope Proteins/antagonists & inhibitors , Virus Internalization/drug effects , Antibodies, Bispecific/genetics , Broadly Neutralizing Antibodies/genetics , Ebolavirus/immunology , Ebolavirus/pathogenicity , Epitopes , Hemorrhagic Fever, Ebola/immunology , Hemorrhagic Fever, Ebola/metabolism , Hemorrhagic Fever, Ebola/virology , Host-Pathogen Interactions , Humans , Ligands , Lysosomes/immunology , Lysosomes/metabolism , Lysosomes/virology , Niemann-Pick C1 Protein/genetics , Niemann-Pick C1 Protein/immunology , Niemann-Pick C1 Protein/metabolism , Protein Engineering , Receptor, IGF Type 2/genetics , Receptor, IGF Type 2/metabolism , THP-1 Cells , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism , Viral Envelope Proteins/genetics , Viral Envelope Proteins/immunology , Viral Envelope Proteins/metabolism
6.
Adv Virus Res ; 104: 185-224, 2019.
Article in English | MEDLINE | ID: mdl-31439149

ABSTRACT

Hantaviruses are important zoonotic pathogens of public health importance that are found on all continents except Antarctica and are associated with hemorrhagic fever with renal syndrome (HFRS) in the Old World and hantavirus pulmonary syndrome (HPS) in the New World. Despite the significant disease burden they cause, no FDA-approved specific therapeutics or vaccines exist against these lethal viruses. The lack of available interventions is largely due to an incomplete understanding of hantavirus pathogenesis and molecular mechanisms of virus replication, including cellular entry. Hantavirus Gn/Gc glycoproteins are the only viral proteins exposed on the surface of virions and are necessary and sufficient to orchestrate virus attachment and entry. In vitro studies have implicated integrins (ß1-3), DAF/CD55, and gC1qR as candidate receptors that mediate viral attachment for both Old World and New World hantaviruses. Recently, protocadherin-1 (PCDH1) was demonstrated as a requirement for cellular attachment and entry of New World hantaviruses in vitro and lethal HPS in vivo, making it the first clade-specific host factor to be identified. Attachment of hantavirus particles to cellular receptors induces their internalization by clathrin-mediated, dynamin-independent, or macropinocytosis-like mechanisms, followed by particle trafficking to an endosomal compartment where the fusion of viral and endosomal membranes can occur. Following membrane fusion, which requires cholesterol and acid pH, viral nucleocapsids escape into the cytoplasm and launch genome replication. In this review, we discuss the current mechanistic understanding of hantavirus entry, highlight gaps in our existing knowledge, and suggest areas for future inquiry.


Subject(s)
Host-Pathogen Interactions , Orthohantavirus/physiology , Virus Internalization , Biomedical Research/trends , Protein Binding , Receptors, Virus/metabolism , Viral Envelope Proteins/metabolism , Virus Attachment
7.
Viruses ; 11(7)2019 07 13.
Article in English | MEDLINE | ID: mdl-31337019

ABSTRACT

Andes virus (ANDV) and Sin Nombre virus (SNV) are the main causative agents responsible for hantavirus cardiopulmonary syndrome (HCPS) in the Americas. HCPS is a severe respiratory disease with a high fatality rate for which there are no approved therapeutics or vaccines available. Some vaccine approaches for HCPS have been tested in preclinical models, but none have been tested in infectious models in regard to their ability to protect against multiple species of HCPS-causing viruses. Here, we utilize recombinant vesicular stomatitis virus-based (VSV) vaccines for Andes virus (ANDV) and Sin Nombre virus (SNV) and assess their ability to provide cross-protection in infectious challenge models. We show that, while both rVSVΔG/ANDVGPC and rVSVΔG/SNVGPC display attenuated growth as compared to wild type VSV, each vaccine is able to induce a cross-reactive antibody response. Both vaccines protected against both homologous and heterologous challenge with ANDV and SNV and prevented HCPS in a lethal ANDV challenge model. This study provides evidence that the development of a single vaccine against HCPS-causing hantaviruses could provide protection against multiple agents.


Subject(s)
Antibodies, Viral/blood , Cross Protection , Hantavirus Pulmonary Syndrome/prevention & control , Orthohantavirus/immunology , Sin Nombre virus/immunology , Vesiculovirus/immunology , Viral Vaccines/immunology , Animals , Antibodies, Neutralizing/blood , Cricetinae , Female , Mesocricetus , Vaccination , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/immunology , Vesiculovirus/genetics , Viral Fusion Proteins/administration & dosage , Viral Fusion Proteins/immunology , Viral Vaccines/genetics
8.
mBio ; 10(1)2019 01 08.
Article in English | MEDLINE | ID: mdl-30622188

ABSTRACT

Rodent-to-human transmission of hantaviruses is associated with severe disease. Currently, no FDA-approved, specific antivirals or vaccines are available, and the requirement for high biocontainment (biosafety level 3 [BSL-3]) laboratories limits hantavirus research. To study hantavirus entry in a BSL-2 laboratory, we set out to generate replication-competent, recombinant vesicular stomatitis viruses (rVSVs) bearing the Gn and Gc (Gn/Gc) entry glycoproteins. As previously reported, rVSVs bearing New World hantavirus Gn/Gc were readily rescued from cDNAs, but their counterparts bearing Gn/Gc from the Old World hantaviruses, Hantaan virus (HTNV) or Dobrava-Belgrade virus (DOBV), were refractory to rescue. However, serial passage of the rescued rVSV-HTNV Gn/Gc virus markedly increased its infectivity and capacity for cell-to-cell spread. This gain in viral fitness was associated with the acquisition of two point mutations: I532K in the cytoplasmic tail of Gn and S1094L in the membrane-proximal stem of Gc. Follow-up experiments with rVSVs and single-cycle VSV pseudotypes confirmed these results. Mechanistic studies revealed that both mutations were determinative and contributed to viral infectivity in a synergistic manner. Our findings indicate that the primary mode of action of these mutations is to relocalize HTNV Gn/Gc from the Golgi complex to the cell surface, thereby affording significantly enhanced Gn/Gc incorporation into budding VSV particles. Finally, I532K/S1094L mutations in DOBV Gn/Gc permitted the rescue of rVSV-DOBV Gn/Gc, demonstrating that incorporation of cognate mutations into other hantaviral Gn/Gc proteins could afford the generation of rVSVs that are otherwise challenging to rescue. The robust replication-competent rVSVs, bearing HTNV and DOBV Gn/Gc, reported herein may also have utility as vaccines.IMPORTANCE Human hantavirus infections cause hantavirus pulmonary syndrome in the Americas and hemorrhagic fever with renal syndrome (HFRS) in Eurasia. No FDA-approved vaccines and therapeutics exist for these deadly viruses, and their development is limited by the requirement for high biocontainment. In this study, we identified and characterized key amino acid changes in the surface glycoproteins of HFRS-causing Hantaan virus that enhance their incorporation into recombinant vesicular stomatitis virus (rVSV) particles. The replication-competent rVSVs encoding Hantaan virus and Dobrava-Belgrade virus glycoproteins described in this work provide a powerful and facile system to study hantavirus entry under lower biocontainment and may have utility as hantavirus vaccines.


Subject(s)
Genetic Vectors , Mutant Proteins/genetics , Orthohantavirus/genetics , Point Mutation , Recombinant Proteins/genetics , Vesiculovirus/genetics , Viral Envelope Proteins/genetics , Cell Line , Glycoproteins/genetics , Humans , Reverse Genetics , Serial Passage , Vesiculovirus/physiology , Virus Release , Virus Replication
9.
Nature ; 563(7732): 559-563, 2018 11.
Article in English | MEDLINE | ID: mdl-30464266

ABSTRACT

The zoonotic transmission of hantaviruses from their rodent hosts to humans in North and South America is associated with a severe and frequently fatal respiratory disease, hantavirus pulmonary syndrome (HPS)1,2. No specific antiviral treatments for HPS are available, and no molecular determinants of in vivo susceptibility to hantavirus infection and HPS are known. Here we identify the human asthma-associated gene protocadherin-1 (PCDH1)3-6 as an essential determinant of entry and infection in pulmonary endothelial cells by two hantaviruses that cause HPS, Andes virus (ANDV) and Sin Nombre virus (SNV). In vitro, we show that the surface glycoproteins of ANDV and SNV directly recognize the outermost extracellular repeat domain of PCDH1-a member of the cadherin superfamily7,8-to exploit PCDH1 for entry. In vivo, genetic ablation of PCDH1 renders Syrian golden hamsters highly resistant to a usually lethal ANDV challenge. Targeting PCDH1 could provide strategies to reduce infection and disease caused by New World hantaviruses.


Subject(s)
Cadherins/metabolism , Orthohantavirus/physiology , Virus Internalization , Animals , Cadherins/chemistry , Cadherins/deficiency , Cadherins/genetics , Endothelial Cells/virology , Female , Orthohantavirus/pathogenicity , Hantavirus Pulmonary Syndrome/virology , Haploidy , Host-Pathogen Interactions/genetics , Humans , Lung/cytology , Male , Mesocricetus/virology , Protein Domains , Protocadherins , Sin Nombre virus/pathogenicity , Sin Nombre virus/physiology
10.
Mol Ther Methods Clin Dev ; 3: 16005, 2016.
Article in English | MEDLINE | ID: mdl-26942209

ABSTRACT

Using lentiviral vector products in clinical applications requires an accurate method for measuring transduction titer. For vectors lacking a marker gene, quantitative polymerase chain reaction is used to evaluate the number of vector DNA copies in transduced target cells, from which a transduction titer is calculated. Immune Design previously described an integration-deficient lentiviral vector pseudotyped with a modified Sindbis virus envelope for use in cancer immunotherapy (VP02, of the ZVex platform). Standard protocols for titering integration-competent lentiviral vectors employ commercial spin columns to purify vector DNA from transduced cells, but such columns are not optimized for isolation of extrachromosomal (nonintegrated) DNA. Here, we describe a 96-well transduction titer assay in which DNA extraction is performed in situ in the transduction plate, yielding quantitative recovery of extrachromosomal DNA. Vector titers measured by this method were higher than when commercial spin columns were used for DNA isolation. Evaluation of the method's specificity, linear range, and precision demonstrate that it is suitable for use as a lot release assay to support clinical trials with VP02. Finally, the method is compatible with titering both integrating and nonintegrating lentiviral vectors, suggesting that it may be used to evaluate the transduction titer for any lentiviral vector.

11.
J Immunother ; 38(2): 41-53, 2015.
Article in English | MEDLINE | ID: mdl-25658613

ABSTRACT

Dendritic cells (DCs) are essential antigen-presenting cells for the initiation of cytotoxic T-cell responses and therefore attractive targets for cancer immunotherapy. We have developed an integration-deficient lentiviral vector termed ID-VP02 that is designed to deliver antigen-encoding nucleic acids selectively to human DCs in vivo. ID-VP02 utilizes a genetically and glycobiologically engineered Sindbis virus glycoprotein to target human DCs through the C-type lectin DC-SIGN (CD209) and also binds to the homologue murine receptor SIGNR1. Specificity of ID-VP02 for antigen-presenting cells in the mouse was confirmed through biodistribution studies showing that following subcutaneous administration, transgene expression was only detectable at the injection site and the draining lymph node. A single immunization with ID-VP02 induced a high level of antigen-specific, polyfunctional effector and memory CD8 T-cell responses that fully protected against vaccinia virus challenge. Upon homologous readministration, ID-VP02 induced a level of high-quality secondary effector and memory cells characterized by stable polyfunctionality and expression of IL-7Rα. Importantly, a single injection of ID-VP02 also induced robust cytotoxic responses against an endogenous rejection antigen of CT26 colon carcinoma cells and conferred both prophylactic and therapeutic antitumor efficacy. ID-VP02 is the first lentiviral vector which combines integration deficiency with DC targeting and is currently being investigated in a phase I trial in cancer patients.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Cancer Vaccines , Carcinoma/therapy , Colonic Neoplasms/therapy , Dendritic Cells/immunology , Genetic Vectors , Immunotherapy, Adoptive , Lentivirus/genetics , Sindbis Virus/genetics , Vaccinia virus/immunology , Vaccinia/immunology , Animals , Carcinoma/immunology , Cell Adhesion Molecules/metabolism , Cell Line, Tumor , Clinical Trials, Phase I as Topic , Colonic Neoplasms/immunology , Cytotoxicity, Immunologic , Dendritic Cells/transplantation , Dendritic Cells/virology , Genetic Engineering , Glycoproteins/genetics , Glycoproteins/metabolism , Humans , Immunologic Memory , Lectins, C-Type/metabolism , Lymphocyte Activation , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Protein Binding , Receptors, Cell Surface/metabolism , Receptors, Interleukin-7/metabolism , Viral Proteins/genetics , Viral Proteins/metabolism , Virus Integration/genetics
12.
Mol Ther ; 22(3): 575-587, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24419083

ABSTRACT

As sentinels of the immune system, dendritic cells (DCs) play an essential role in regulating cellular immune responses. One of the main challenges of developing DC-targeted therapies includes the delivery of antigen to DCs in order to promote the activation of antigen-specific effector CD8 T cells. With the goal of creating antigen-directed immunotherapeutics that can be safely administered directly to patients, Immune Design has developed a platform of novel integration-deficient lentiviral vectors that target and deliver antigen-encoding nucleic acids to human DCs. This platform, termed ID-VP02, utilizes a novel genetic variant of a Sindbis virus envelope glycoprotein with posttranslational carbohydrate modifications in combination with Vpx, a SIVmac viral accessory protein, to achieve efficient targeting and transduction of human DCs. In addition, ID-VP02 incorporates safety features in its design that include two redundant mechanisms to render ID-VP02 integration-deficient. Here, we describe the characteristics that allow ID-VP02 to specifically transduce human DCs, and the advances that ID-VP02 brings to conventional third-generation lentiviral vector design as well as demonstrate upstream production yields that will enable manufacturing feasibility studies to be conducted.


Subject(s)
Antigens, Viral/immunology , CD8-Positive T-Lymphocytes/immunology , Dendritic Cells/immunology , Lentivirus/genetics , Sindbis Virus/genetics , Viral Envelope Proteins/genetics , Genetic Vectors/administration & dosage , HEK293 Cells , Humans , Immunity, Cellular/immunology , Tissue Distribution
13.
Biores Open Access ; 2(6): 421-30, 2013 Dec 01.
Article in English | MEDLINE | ID: mdl-24380052

ABSTRACT

Lentiviral vectors (LVs) are being developed for clinical use in humans for applications including gene therapy and immunotherapy. A safety concern for use of LVs in humans is the generation of replication-competent lentivirus (RCL), which may arise due to recombination between the split genomes of third-generation LVs. Although no RCL has been detected to date, design optimizations that minimize recombination events between split genome vectors would provide an added safety benefit that may further reduce the risk of RCL formation. Here we describe design elements introduced to the gag/pol plasmid with the intention of eliminating psi-gag recombination between the vector genome and gag/pol. These design changes, consisting of codon optimization of the gag/pol sequence and the deletion of the Rev-responsive element, abrogate the requirement for Rev in expression of Gag protein, thus the resulting gag/pol construct being Rev independent (RI gag/pol). We show that generating vector using the RI gag/pol construct has no effect on particle production or transduction titers. The RI and wild-type gag/pol vectors function equivalently as antigen-specific immunotherapy, potently inducing antigen-specific CD8 T cells that protect against challenge with vaccinia virus. Most importantly, the designed RI gag/pol eliminated detectable psi-gag recombination. Interestingly, we detected recombination between the vector genome and gag/pol from regions without sequence homology. Our findings imply that although unpredictable recombination events may still occur, the RI gag/pol design is sufficient to prevent psi-gag recombination.

SELECTION OF CITATIONS
SEARCH DETAIL
...