Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Brain Res Mol Brain Res ; 37(1-2): 290-6, 1996 Apr.
Article in English | MEDLINE | ID: mdl-8738163

ABSTRACT

We have investigated the production of diazepam-binding inhibitor (DBI)-related peptides by astrocytes in primary culture and we have determined the effect of the octadecaneuropeptide DBI[33-50] (ODN) on the intracellular calcium concentration ([Ca2+]i) in astrocytes. Immunocytochemical labeling with antibodies against ODN showed that cultured astrocytes retain their ability to synthesize DBI in vitro. Cultured astrocytes were also found to release substantial amounts of ODN-immunoreactive material, and a brief exposure of astrocytes to a depolarizing potassium concentration resulted in a 5-fold increase in the rate of release of the ODN-like peptide. Microfluorimetric measurement of [Ca2+]i with the fluorescent probe indo-1 showed that nanomolar concentrations of ODN induced a marked increase in [Ca2+]i. The stimulatory effect of ODN on [Ca2+]i was not affected by calcium channel blockers or by incubation in Ca(2+)-free medium. In contrast, thapsigargin, an inhibitor of microsomal Ca(2+)-ATPase activity, totally abolished the ODN-induced increase in [Ca2+]i. Repeated pulses of ODN caused attenuation of the response, indicating the existence of a desensitization phenomenon. Preincubation of astrocytes with pertussis toxin totally blocked the effect of ODN on [Ca2+]i. The present study indicates that ODN-related peptides are synthesized and released by glial cells. Our results also show that synthetic ODN induces calcium mobilization from an intracellular store through stimulation of pertussis toxin-sensitive G protein. Taken together, these data suggest that endozepines act as paracrine and/or autocrine factors controlling the activity of astroglial cells.


Subject(s)
Astrocytes/drug effects , Calcium/metabolism , Neuropeptides/pharmacology , Receptors, GABA-A/drug effects , Animals , Cadmium/pharmacology , Diazepam Binding Inhibitor , Dose-Response Relationship, Drug , Immunohistochemistry , Peptide Fragments , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL