Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 194
Filter
1.
PLoS One ; 19(7): e0306452, 2024.
Article in English | MEDLINE | ID: mdl-38995877

ABSTRACT

BACKGROUND: Children from families with low socioeconomic status (SES), as determined by income, experience several negative outcomes, such as higher rates of newborn mortality and behavioral issues. Moreover, associations between DNA methylation and low income or poverty status are evident beginning at birth, suggesting prenatal influences on offspring development. Recent evidence suggests neighborhood opportunities may protect against some of the health consequences of living in low income households. The goal of this study was to assess whether neighborhood opportunities moderate associations between household income (HI) and neonate developmental maturity as measured with DNA methylation. METHODS: Umbilical cord blood DNA methylation data was available in 198 mother-neonate pairs from the larger CANDLE cohort. Gestational age acceleration was calculated using an epigenetic clock designed for neonates. Prenatal HI and neighborhood opportunities measured with the Childhood Opportunity Index (COI) were regressed on gestational age acceleration controlling for sex, race, and cellular composition. RESULTS: Higher HI was associated with higher gestational age acceleration (B = .145, t = 4.969, p = 1.56x10-6, 95% CI [.087, .202]). Contrary to expectation, an interaction emerged showing higher neighborhood educational opportunity was associated with lower gestational age acceleration at birth for neonates with mothers living in moderate to high HI (B = -.048, t = -2.08, p = .03, 95% CI [-.092, -.002]). Female neonates showed higher gestational age acceleration at birth compared to males. However, within males, being born into neighborhoods with higher social and economic opportunity was associated with higher gestational age acceleration. CONCLUSION: Prenatal HI and neighborhood qualities may affect gestational age acceleration at birth. Therefore, policy makers should consider neighborhood qualities as one opportunity to mitigate prenatal developmental effects of HI.


Subject(s)
DNA Methylation , Gestational Age , Poverty , Humans , Female , Infant, Newborn , Male , Adult , Neighborhood Characteristics , Residence Characteristics , Pregnancy , Fetal Blood/metabolism , Income
2.
JAMA Netw Open ; 7(7): e2421884, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39073815

ABSTRACT

Importance: Disasters experienced by an entire community provide opportunities to understand individual differences in risk for adverse health outcomes over time. DNA methylation (DNAm) differences may help to distinguish individuals at increased risk following large-scale disasters. Objective: To examine the association of epigenetic age acceleration with probable posttraumatic stress disorder (PTSD) and PTSD symptom severity in women. Design, Setting, and Participants: This prospective cohort study examined data from participants in the Women and Their Children's Health cohort, who were characterized longitudinally following the Deepwater Horizon oil spill (DHOS) in 2010 and through numerous hurricanes in the Gulf Coast region of the US. Wave 1 occurred August 6, 2012, through June 26, 2014, and wave 2 occurred September 2, 2014, through May 27, 2016. Data were analyzed between August 18 and November 4, 2023. Address-based sampling was used to recruit women aged 18 to 80 years and residing in 1 of the 7 Louisiana parishes surrounding the DHOS-affected region. Recruitment consisted of 2-stage sampling that (1) undersampled the 2 more urban parishes to maximize probability of participant oil exposure and (2) proportionally recruited participants across census tracts in the 5 other parishes closest to the spill. Exposure: Posttraumatic stress subsequent to the DHOS. Main Outcome and Measures: Epigenetic age acceleration was measured by DNAm assayed from survey wave 1 blood samples. Posttraumatic stress disorder was assessed using the PTSD Checklist for DSM-5 at survey wave 2, and lifetime trauma exposure was assessed using the Life Events Checklist for DSM-5. General linear models were used to examine the association between wave 1 DNAm age and wave 2 probable PTSD diagnosis and symptom severity. Results: A total of 864 women (mean [SD] age, 47.1 [12.0] years; 328 Black [38.0%], 19 American Indian [2.2%], 486 White [56.3%], and 30 of other racial groups, including uknown or unreported [3.5%]) were included. Black and American Indian participants had a higher age acceleration at wave 1 compared with White participants (ß = 1.64 [95% CI, 1.02-2.45] and 2.34 [95% CI, 0.33-4.34], respectively), and they had higher PTSD symptom severity at wave 2 (ß = 7.10 [95% CI, 4.62-9.58] and 13.08 [95% CI, 4.97-21.18], respectively). Epigenetic age acceleration at wave 1 was associated with PTSD symptom severity at wave 2 after adjusting for race, smoking, body mass index, and household income (ß = 0.38; 95% CI, 0.11-0.65). Conclusions and Relevance: In this cohort study, epigenetic age acceleration was higher in minoritized racial groups and associated with future PTSD diagnosis and severity. These findings support the need for psychoeducation about traumatic responses to increase the likelihood that treatment is sought before years of distress and entrenchment of symptoms and comorbidities occur.


Subject(s)
Stress Disorders, Post-Traumatic , Humans , Female , Stress Disorders, Post-Traumatic/genetics , Stress Disorders, Post-Traumatic/epidemiology , Stress Disorders, Post-Traumatic/diagnosis , Adult , Middle Aged , Louisiana/epidemiology , Prospective Studies , Aged , Epigenesis, Genetic , Petroleum Pollution/adverse effects , DNA Methylation , Disasters , Adolescent , Young Adult , Aged, 80 and over , Cyclonic Storms , Epigenomics/methods , Health Status Disparities
3.
Hum Reprod ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890131

ABSTRACT

STUDY QUESTION: Are markers of epigenetic age acceleration in follicular fluid associated with outcomes of ovarian stimulation? SUMMARY ANSWER: Increased epigenetic age acceleration of follicular fluid using the Horvath clock, but not other epigenetic clocks (GrimAge and Granulosa Cell), was associated with lower peak estradiol levels and decreased number of total and mature oocytes. WHAT IS KNOWN ALREADY: In granulosa cells, there are inconsistent findings between epigenetic age acceleration and ovarian response outcomes. STUDY DESIGN, SIZE, DURATION: Our study included 61 women undergoing IVF at an academic fertility clinic in the New England area who were part of the Environment and Reproductive Health Study (2006-2016). PARTICIPANTS/MATERIALS, SETTING, METHODS: Participants provided a follicular fluid sample during oocyte retrieval. DNA methylation of follicular fluid was assessed using a genome-wide methylation screening tool. Three established epigenetic clocks (Horvath, GrimAge, and Granulosa Cell) were used to predict DNA-methylation-based epigenetic age. To calculate the age acceleration, we regressed epigenetic age on chronological age and extracted the residuals. The association between epigenetic age acceleration and ovarian response outcomes (peak estradiol levels, follicle stimulation hormone, number of total, and mature oocytes) was assessed using linear and Poisson regression adjusted for chronological age, three surrogate variables (to account for cellular heterogeneity), race, smoking status, initial infertility diagnosis, and stimulation protocol. MAIN RESULTS AND ROLE OF CHANCE: Compared to the median chronological age of our participants (34 years), the Horvath clock predicted, on an average, a younger epigenetic age (median: 24.2 years) while the GrimAge (median: 38.6 years) and Granulosa Cell (median: 39.0 years) clocks predicted, on an average, an older epigenetic age. Age acceleration based on the Horvath clock was associated with lower peak estradiol levels (-819.4 unit decrease in peak estradiol levels per standard deviation increase; 95% CI: -1265.7, -373.1) and fewer total (% change in total oocytes retrieved per standard deviation increase: -21.8%; 95% CI: -37.1%, -2.8%) and mature oocytes retrieved (% change in mature oocytes retrieved per standard deviation increase: -23.8%; 95% CI: -39.9%, -3.4%). The age acceleration based on the two other epigenetic clocks was not associated with markers of ovarian response. LIMITATIONS, REASONS FOR CAUTION: Our sample size was small and we did not specifically isolate granulosa cells from follicular fluid samples so our samples could have included mixed cell types. WIDER IMPLICATIONS OF THE FINDINGS: Our results highlight that certain epigenetic clocks may be predictive of ovarian stimulation outcomes when applied to follicular fluid; however, the inconsistent findings for specific clocks across studies indicate a need for further research to better understand the clinical utility of epigenetic clocks to improve IVF treatment. STUDY FUNDING/COMPETING INTEREST(S): The study was supported by grants ES009718, ES022955, ES000002, and ES026648 from the National Institute of Environmental Health Sciences (NIEHS) and a pilot grant from the NIEHS-funded HERCULES Center at Emory University (P30 ES019776). RBH was supported by the Emory University NIH Training Grant (T32-ES012870). TRIAL REGISTRATION NUMBER: N/A.

4.
JAMA Netw Open ; 7(6): e2416588, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38869898

ABSTRACT

Importance: Racial discrimination increases the risk of adverse brain health outcomes, potentially via neuroplastic changes in emotion processing networks. The involvement of deep brain regions (brainstem and midbrain) in these responses is unknown. Potential associations of racial discrimination with alterations in deep brain functional connectivity and accelerated epigenetic aging, a process that substantially increases vulnerability to health problems, are also unknown. Objective: To examine associations of racial discrimination with brainstem and midbrain resting-state functional connectivity (RSFC) and DNA methylation age acceleration (DMAA) among Black women in the US. Design, Setting, and Participants: This cohort study was conducted between January 1, 2012, and February 28, 2015, and included a community-based sample of Black women (aged ≥18 years) recruited as part of the Grady Trauma Project. Self-reported racial discrimination was examined in association with seed-to-voxel brain connectivity, including the locus coeruleus (LC), periaqueductal gray (PAG), and superior colliculus (SC); an index of DMAA (Horvath clock) was also evaluated. Posttraumatic stress disorder (PTSD), trauma exposure, and age were used as covariates in statistical models to isolate racial discrimination-related variance. Data analysis was conducted between January 10 and October 30, 2023. Exposure: Varying levels of racial discrimination exposure, other trauma exposure, and posttraumatic stress disorder (PTSD). Main Outcomes and Measures: Racial discrimination frequency was assessed with the Experiences of Discrimination Scale, other trauma exposure was evaluated with the Traumatic Events Inventory, and current PTSD was evaluated with the PTSD Symptom Scale. Seed-to-voxel functional connectivity analyses were conducted with LC, PAG, and SC seeds. To assess DMAA, the Methylation EPIC BeadChip assay (Illumina) was conducted with whole-blood samples from a subset of 49 participants. Results: This study included 90 Black women, with a mean (SD) age of 38.5 (11.3) years. Greater racial discrimination was associated with greater left LC RSFC to the bilateral precuneus (a region within the default mode network implicated in rumination and reliving of past events; cluster size k = 228; t85 = 4.78; P < .001, false discovery rate-corrected). Significant indirect effects were observed for the left LC-precuneus RSFC on the association between racial discrimination and DMAA (ß [SE] = 0.45 [0.16]; 95% CI, 0.12-0.77). Conclusions and Relevance: In this study, more frequent racial discrimination was associated with proportionately greater RSFC of the LC to the precuneus, and these connectivity alterations were associated with DMAA. These findings suggest that racial discrimination contributes to accelerated biological aging via altered connectivity between the LC and default mode network, increasing vulnerability for brain health problems.


Subject(s)
Aging , Black or African American , Racism , Humans , Female , Racism/psychology , Adult , Black or African American/statistics & numerical data , Black or African American/psychology , Aging/physiology , Middle Aged , Epigenesis, Genetic , Cohort Studies , DNA Methylation , Stress Disorders, Post-Traumatic/physiopathology , Magnetic Resonance Imaging
5.
Transl Psychiatry ; 14(1): 172, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38561342

ABSTRACT

Observational studies suggest that posttraumatic stress disorder (PTSD) increases risk for various autoimmune diseases. Insights into shared biology and causal relationships between these diseases may inform intervention approaches to PTSD and co-morbid autoimmune conditions. We investigated the shared genetic contributions and causal relationships between PTSD, 18 autoimmune diseases, and 3 immune/inflammatory biomarkers. Univariate MiXeR was used to contrast the genetic architectures of phenotypes. Genetic correlations were estimated using linkage disequilibrium score regression. Bi-directional, two-sample Mendelian randomization (MR) was performed using independent, genome-wide significant single nucleotide polymorphisms; inverse variance weighted and weighted median MR estimates were evaluated. Sensitivity analyses for uncorrelated (MR PRESSO) and correlated horizontal pleiotropy (CAUSE) were also performed. PTSD was considerably more polygenic (10,863 influential variants) than autoimmune diseases (median 255 influential variants). However, PTSD evidenced significant genetic correlation with nine autoimmune diseases and three inflammatory biomarkers. PTSD had putative causal effects on autoimmune thyroid disease (p = 0.00009) and C-reactive protein (CRP) (p = 4.3 × 10-7). Inferences were not substantially altered by sensitivity analyses. Additionally, the PTSD-autoimmune thyroid disease association remained significant in multivariable MR analysis adjusted for genetically predicted inflammatory biomarkers as potential mechanistic pathway variables. No autoimmune disease had a significant causal effect on PTSD (all p values > 0.05). Although causal effect models were supported for associations of PTSD with CRP, shared pleiotropy was adequate to explain a putative causal effect of CRP on PTSD (p = 0.18). In summary, our results suggest a significant genetic overlap between PTSD, autoimmune diseases, and biomarkers of inflammation. PTSD has a putative causal effect on autoimmune thyroid disease, consistent with existing epidemiologic evidence. A previously reported causal effect of CRP on PTSD is potentially confounded by shared genetics. Together, results highlight the nuanced links between PTSD, autoimmune disorders, and associated inflammatory signatures, and suggest the importance of targeting related pathways to protect against disease and disability.


Subject(s)
Autoimmune Diseases , Hashimoto Disease , Stress Disorders, Post-Traumatic , Humans , Stress Disorders, Post-Traumatic/genetics , Phenotype , C-Reactive Protein , Autoimmune Diseases/genetics , Biomarkers , Genome-Wide Association Study
6.
Sci Rep ; 14(1): 5009, 2024 02 29.
Article in English | MEDLINE | ID: mdl-38424222

ABSTRACT

Smoking exposure during adulthood can disrupt oocyte development in women, contributing to infertility and possibly adverse birth outcomes. Some of these effects may be reflected in epigenome profiles in granulosa cells (GCs) in human follicular fluid. We compared the epigenetic modifications throughout the genome in GCs from women who were former (N = 15) versus never smokers (N = 44) undergoing assisted reproductive technologies (ART). This study included 59 women undergoing ART. Smoking history including time since quitting was determined by questionnaire. GCs were collected during oocyte retrieval and DNA methylation (DNAm) levels were profiled using the Infinium MethylationEPIC BeadChip. We performed an epigenome-wide association study with robust linear models, regressing DNAm level at individual loci on smoking status, adjusting for age, ovarian stimulation protocol, and three surrogate variables. We performed differentially methylated regions (DMRs) analysis and over-representation analysis of the identified CpGs and corresponding gene set. 81 CpGs were differentially methylated among former smokers compared to never smokers (FDR < 0.05). We identified 2 significant DMRs (KCNQ1 and RHBDD2). The former smoking-associated genes were enriched in oxytocin signaling, adrenergic signaling in cardiomyocytes, platelet activation, axon guidance, and chemokine signaling pathway. These epigenetic variations have been associated with inflammatory responses, reproductive outcomes, cancer development, neurodevelopmental disorder, and cardiometabolic health. Secondarily, we examined the relationships between time since quitting and DNAm at significant CpGs. We observed three CpGs in negative associations with the length of quitting smoking (p < 0.05), which were cg04254052 (KCNIP1), cg22875371 (OGDHL), and cg27289628 (LOC148145), while one in positive association, which was cg13487862 (PLXNB1). As a pilot study, we demonstrated epigenetic modifications associated with former smoking in GCs. The study is informative to potential biological pathways underlying the documented association between smoking and female infertility and biomarker discovery for smoking-associated reproductive outcomes.


Subject(s)
Epigenesis, Genetic , Genome-Wide Association Study , Humans , Female , Adult , Pilot Projects , Smoking/adverse effects , Smoking/genetics , DNA Methylation , Reproduction , Membrane Proteins/genetics
7.
Epigenomics ; 16(5): 273-276, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38312014

ABSTRACT

Tweetable abstract This article reviews machine learning models that leverages epigenomic data for predicting multifactorial diseases and symptoms as well as how such models can be utilized to explore new research questions.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Humans , Epigenome , Data Science , Epigenomics
8.
Epigenomics ; 16(3): 175-188, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38131149

ABSTRACT

People with ovaries experience reproductive aging as their reproductive function and system declines. This has significant implications for both fertility and long-term health, with people experiencing an increased risk of cardiometabolic disorders after menopause. Reproductive aging can be assessed through markers of ovarian reserve, response to fertility treatment or molecular biomarkers, including DNA methylation. Changes in DNA methylation with age associate with poorer reproductive outcomes, and epigenome-wide studies can provide insight into genes and pathways involved. DNA methylation-based epigenetic clocks can quantify biological age in reproductive tissues and systemically. This review provides an overview of hallmarks and theories of aging in the context of the reproductive system, and then focuses on studies of DNA methylation in reproductive tissues.


People with ovaries experience a natural decline in the function of their reproductive system as they age. This decline eventually leads to menopause, and after menopause, people have an increased risk of developing cardiovascular or other chronic diseases. In the clinic, it is hard to measure aging of the reproductive system, so other markers of the ovary's function, like the number of remaining eggs, are used. We can also measure reproductive aging using molecular biomarkers, which can help us determine when a person's molecular age is different from their chronological age. This review focuses on an overview of biological processes and theories associated with aging, and then focuses on what can be learned from molecular biomarkers.


Subject(s)
Aging , DNA Methylation , Female , Humans , Aging/genetics , Reproduction/genetics , Menopause/genetics , Ovary , Epigenesis, Genetic
9.
Am J Reprod Immunol ; 90(6): e13799, 2023 12.
Article in English | MEDLINE | ID: mdl-38009052

ABSTRACT

PROBLEM: In pregnancy, lower socioeconomic status (SES) is associated with adverse outcomes, which is partly attributed to chronic inflammation. Our study compared the maternal serum cytokine profiles in patients with low and high SES. METHOD OF STUDY: This retrospective cohort study compared maternal serum cytokine profiles between Medicaid-insured patients who delivered at an urban safety-net hospital (low SES) and privately-insured patients who delivered at a community-based academic hospital (high SES) in Atlanta, GA (n = 32-33/group). Serum samples were obtained during prenatal venipuncture from 13 to 38 weeks' gestation and the cohorts were matched by gestational age. Interferon (IFN)-γ, Interleukin (IL)-10, IL-1ß, IL-4, IL-6, IL-8, and Tumor Necrosis Factor (TNF)-α were assayed from maternal serum samples using a standard ELISA assay. RESULTS: Median concentrations of IL-6, a promotor of chronic inflammation, were higher in the low SES group (0.85 vs. 0.49 pg/mL, p < .001), while median levels of IL-1ß, a potent monocyte activator, and TNF-α, a master regulator of acute inflammation, were lower in the low SES group (0.09 vs. 0.46 pg/mL, p < .001, and 1.23 vs. 1.58 pg/mL, p = .002, respectively) as compared to the high SES group. After adjusting for maternal age, obesity, hypertensive disorders, and gestational age at delivery, the differences in IL-6 and IL-1ß by SES persisted (p = .0002 and p < .0001, respectively). CONCLUSIONS: In this retrospective cohort study, there were significant differences in levels of pro-inflammatory cytokines during pregnancy for groups defined by SES, even after adjustment for confounding variables. Our data are foundational for further research to investigate SES-associated inflammation that may contribute to adverse pregnancy outcomes.


Subject(s)
Cytokines , Interleukin-6 , Pregnancy , Female , Humans , Retrospective Studies , Tumor Necrosis Factor-alpha , Inflammation , Social Class
10.
Dev Psychopathol ; : 1-13, 2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37771149

ABSTRACT

Although offspring of women exposed to childhood trauma exhibit elevated rates of psychopathology, many children demonstrate resilience to these intergenerational impacts. Among the variety of factors that likely contribute to resilience, epigenetic processes have been suggested to play an important role. The current study used a prospective design to test the novel hypothesis that offspring epigenetic aging - a measure of methylation differences that are associated with infant health outcomes - moderates the relationship between maternal exposure to childhood adversity and offspring symptomatology. Maternal childhood adversity was self-reported during pregnancy via the ACEs survey and the CTQ, which assessed total childhood trauma as well as maltreatment subtypes (i.e., emotional, physical, and sexual abuse). Offspring blood samples were collected at or shortly after birth and assayed on a DNA methylation microarray, and offspring symptomatology was assessed with the CBCL/1.5-5 when offspring were 2-4 years old. Results indicated that maternal childhood trauma, particularly sexual abuse, was predictive of offspring symptoms (ps = 0.003-0.03). However, the associations between maternal sexual abuse and offspring symptomatology were significantly attenuated in offspring with accelerated epigenetic aging. These findings further our understanding of how epigenetic processes may contribute to and attenuate the intergenerational link between stress and psychopathology.

11.
Clin Epigenetics ; 15(1): 142, 2023 09 02.
Article in English | MEDLINE | ID: mdl-37660147

ABSTRACT

BACKGROUND: Epigenetic clocks are promising tools for assessing biological age. We assessed the accuracy of pediatric epigenetic clocks in gestational and chronological age determination. RESULTS: Our study used data from seven tissue types on three DNA methylation profiling microarrays and found that the Knight and Bohlin clocks performed similarly for blood cells, while the Lee clock was superior for placental samples. The pediatric-buccal-epigenetic clock performed the best for pediatric buccal samples, while the Horvath clock is recommended for children's blood cell samples. The NeoAge clock stands out for its unique ability to predict post-menstrual age with high correlation with the observed age in infant buccal cell samples. CONCLUSIONS: Our findings provide valuable guidance for future research and development of epigenetic clocks in pediatric samples, enabling more accurate assessments of biological age.


Subject(s)
DNA Methylation , Placenta , Pregnancy , Infant , Humans , Child , Female , Epigenomics , Epigenesis, Genetic
12.
Menopause ; 30(10): 1038-1044, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37610715

ABSTRACT

OBJECTIVE: This study aimed to determine the relationship between stages of the menopause transition (premenopausal, perimenopausal, and postmenopausal) on symptoms of posttraumatic stress disorder (PTSD) and depression in trauma-exposed women. METHODS: A cross-sectional study conducted between 2005 and 2017 recruited and enrolled an urban community sample (n = 6,093) from nonpsychiatric medical clinic waiting rooms of Grady Memorial Hospital, a public safety net hospital in Atlanta, Georgia. Participants were female, 18 to 65 years old, and predominantly Black/African American. RESULTS: Of the 6,093 participants, 93.8% were Black/African American, 2.5% were White, and 3.8% were of all other races (Hispanic/Latino, Asian, multiracial). Participants younger than 40 years were categorized as premenopausal (n = 3,166), between 40 and 55 years of age were categorized as perimenopausal (n = 2,127), and older than 55 years were categorized as postmenopausal (n = 790). Menopause status was associated with total PTSD symptom severity ( F2,5416 = 9.61, P < 0.001), symptom severity within all three PTSD symptom clusters (avoidance/numbing symptoms: F2,5416 = 7.10, P < 0.001; intrusive symptoms: F2,5416 = 7.04, P < 0.001; hyperarousal symptoms: F2,5409 = 8.31, P < 0.001), and depression symptom severity ( F2,5148 = 11.4, P < 0.001). Compared with both premenopausal and postmenopausal women, perimenopausal women reported significantly worse total PTSD symptoms, symptoms in the hyperarousal cluster, and depressive symptoms. CONCLUSIONS: The current cross-sectional data show that symptoms of PTSD and depression in women are associated with reproductive age, such that perimenopausal women show higher symptom severity than premenopausal and postmenopausal women. Future longitudinal studies can reveal how changes in hormones over the course of the menopause transition impact the symptoms, neurobiology, and psychophysiology of PTSD.


Subject(s)
Stress Disorders, Post-Traumatic , Female , Humans , Adolescent , Young Adult , Adult , Middle Aged , Aged , Male , Stress Disorders, Post-Traumatic/psychology , Depression/diagnosis , Cross-Sectional Studies , Perimenopause , Menopause
13.
Front Immunol ; 14: 1211558, 2023.
Article in English | MEDLINE | ID: mdl-37465682

ABSTRACT

Introduction: Maternally derived antibodies are crucial for neonatal immunity. Understanding the binding and cross-neutralization capacity of maternal and cord antibody responses to SARS-CoV-2 variants following COVID-19 vaccination in pregnancy can inform neonatal immunity. Methods: Here we characterized the binding and neutralizing antibody profile at delivery in 24 pregnant individuals following two doses of Moderna mRNA-1273 or Pfizer BNT162b2 vaccination. We analyzed for SARS-CoV-2 multivariant cross-neutralizing antibody levels for wildtype Wuhan, Delta, Omicron BA1, BA2, and BA4/BA5 variants. In addition, we evaluated the transplacental antibody transfer by profiling maternal and umbilical cord blood. Results: Our results reveal that the current COVID-19 vaccination induced significantly higher RBD-specific binding IgG titers in cord blood compared to maternal blood for both the Wuhan and Omicron BA1 strain. Interestingly, the binding IgG antibody levels for the Omicron BA1 strain were significantly lower when compared to the Wuhan strain in both maternal and cord blood. In contrast to the binding, the Omicron BA1, BA2, and BA4/5 specific neutralizing antibody levels were significantly lower compared to the Wuhan and Delta variants. It is interesting to note that the BA4/5 neutralizing capacity was not detected in either maternal or cord blood. Discussion: Our data suggest that the initial series of COVID-19 mRNA vaccines were immunogenic in pregnant women, and vaccine-elicited binding antibodies were detectable in cord blood at significantly higher levels for the Wuhan and Delta variants but not for the Omicron variants. Interestingly, the vaccination did not induce neutralizing antibodies for Omicron variants. These results provide novel insight into the impact of vaccination on maternal humoral immune response and transplacental antibody transfer for SARS-CoV-2 variants and support the need for bivalent boosters as new variants emerge.


Subject(s)
COVID-19 , Pregnancy Complications, Infectious , Pregnancy , Infant, Newborn , Female , Humans , COVID-19 Vaccines , SARS-CoV-2 , Fetal Blood , BNT162 Vaccine , COVID-19/prevention & control , Antibodies, Neutralizing , Antibodies, Viral
14.
Epigenetics ; 18(1): 2231722, 2023 12.
Article in English | MEDLINE | ID: mdl-37433036

ABSTRACT

Pregnancy can exacerbate or prompt the onset of stress-related disorders, such as post-traumatic stress disorder (PTSD). PTSD is associated with heightened stress responsivity and emotional dysregulation, as well as increased risk of chronic disorders and mortality. Further, maternal PTSD is associated with gestational epigenetic age acceleration in newborns, implicating the prenatal period as a developmental time period for the transmission of effects across generations. Here, we evaluated the associations between PTSD symptoms, maternal epigenetic age acceleration, and infant gestational epigenetic age acceleration in 89 maternal-neonatal dyads. Trauma-related experiences and PTSD symptoms in mothers were assessed during the third trimester of pregnancy. The MethylationEPIC array was used to generate DNA methylation data from maternal and neonatal saliva samples collected within 24 h of infant birth. Maternal epigenetic age acceleration was calculated using Horvath's multi-tissue clock, PhenoAge and GrimAge. Gestational epigenetic age was estimated using the Haftorn clock. Maternal cumulative past-year stress (GrimAge: p = 3.23e-04, PhenoAge: p = 9.92e-03), PTSD symptoms (GrimAge: p = 0.019), and difficulties in emotion regulation (GrimAge: p = 0.028) were associated with accelerated epigenetic age in mothers. Maternal PTSD symptoms were associated with lower gestational epigenetic age acceleration in neonates (p = 0.032). Overall, our results suggest that maternal cumulative past-year stress exposure and trauma-related symptoms may increase the risk for age-related problems in mothers and developmental problems in their newborns.


Subject(s)
Aging , DNA Methylation , Epigenesis, Genetic , Stress Disorders, Post-Traumatic , Female , Humans , Infant, Newborn , Pregnancy , Acceleration , Emotions , Hispanic or Latino/genetics , Hispanic or Latino/psychology , Mothers , Stress Disorders, Post-Traumatic/genetics
15.
Brain Behav Immun Health ; 31: 100651, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37449285

ABSTRACT

Recent evidence suggests that maternal childhood adversity may have an intergenerational impact, with children of adversity-exposed mothers exhibiting elevated symptoms of psychopathology. At the same time, many children demonstrate resilience to these intergenerational effects. Among the variety of factors that likely contribute to resilience, the composition of the gut microbiome may play a role in buffering the negative impacts of trauma and stress. The current prospective cohort study tested the novel hypothesis that offspring gut microbiome composition is a potential moderator in the relationship between maternal exposure to childhood adversity and offspring symptomatology (i.e., internalizing, externalizing, and posttraumatic stress symptoms). Maternal childhood adversity was self-reported during pregnancy via the Childhood Trauma Questionnaire and Adverse Childhood Experiences (ACEs) survey, and offspring symptomatology was assessed with the Child Behavior Checklist/1.5-5 when offspring were 2-4 years old. Offspring fecal samples were collected between these timepoints (i.e., during 6- to 24-month follow-up visits) for microbiome sequencing. Results indicated that maternal ACEs and the relative abundances of Bifidobacterium, Lactobacillus, and Prevotella were associated with offspring symptomatology. However, there was little evidence that microbial abundance moderated the association between maternal adversity and offspring symptoms. Overall, these findings further our understanding of how the gut microbiome associates with psychopathology, and informs future studies aimed at targeting modifiable factors that may buffer the intergenerational effects of childhood adversity.

16.
Clin Epigenetics ; 15(1): 84, 2023 05 13.
Article in English | MEDLINE | ID: mdl-37179367

ABSTRACT

BACKGROUND: Higher exposure to traffic-related air pollution (TRAP) is related to lower fertility, with specific adverse effects on the ovary. Folic acid may attenuate these effects. Our goal was to explore the relation of TRAP exposure and supplemental folic acid intake with epigenetic aging and CpG-specific DNA methylation (DNAm) in granulosa cells (GC). Our study included 61 women undergoing ovarian stimulation at a fertility center (2005-2015). DNAm levels were profiled in GC using the Infinium MethylationEPIC BeadChip. TRAP was defined using a spatiotemporal model to estimate residence-based nitrogen dioxide (NO2) exposure. Supplemental folic acid intake was measured with a validated food frequency questionnaire. We used linear regression to evaluate whether NO2 or supplemental folic acid was associated with epigenetic age acceleration according to the Pan-tissue, mural GC, and GrimAge clocks or DNAm across the genome adjusting for potential confounders and accounting for multiple testing with a false discovery rate < 0.1. RESULTS: There were no associations between NO2 or supplemental folic acid intake and epigenetic age acceleration of GC. NO2 and supplemental folic acid were associated with 9 and 11 differentially methylated CpG sites. Among these CpGs, only cg07287107 exhibited a significant interaction (p-value = 0.037). In women with low supplemental folic acid, high NO2 exposure was associated with 1.7% higher DNAm. There was no association between NO2 and DNAm in women with high supplemental folic acid. The genes annotated to the top 250 NO2-associated CpGs were enriched for carbohydrate and protein metabolism, postsynaptic potential and dendrite development, and membrane components and exocytosis. The genes annotated to the top 250 supplemental folic acid-associated CpGs were enriched for estrous cycle, learning, cognition, synaptic organization and transmission, and size and composition of neuronal cell bodies. CONCLUSIONS: We found no associations between NO2, supplemental folic acid, and DNAm age acceleration of GC. However, there were 20 differentially methylated CpGs and multiple enriched GO terms associated with both exposures suggesting that differences in GC DNAm could be a plausible mechanism underlying the effects of TRAP and supplemental folic acid on ovarian function.


Subject(s)
Air Pollution , DNA Methylation , Humans , Female , Air Pollution/adverse effects , Nitrogen Dioxide/adverse effects , Nitrogen Dioxide/analysis , Aging/genetics , Folic Acid/adverse effects
17.
Epigenetics ; 18(1): 2207959, 2023 12.
Article in English | MEDLINE | ID: mdl-37196182

ABSTRACT

Differentially methylated regions (DMRs) are genomic regions with methylation patterns across multiple CpG sites that are associated with a phenotype. In this study, we proposed a Principal Component (PC) based DMR analysis method for use with data generated using the Illumina Infinium MethylationEPIC BeadChip (EPIC) array. We obtained methylation residuals by regressing the M-values of CpGs within a region on covariates, extracted PCs of the residuals, and then combined association information across PCs to obtain regional significance. Simulation-based genome-wide false positive (GFP) rates and true positive rates were estimated under a variety of conditions before determining the final version of our method, which we have named DMRPC. Then, DMRPC and another DMR method, coMethDMR, were used to perform epigenome-wide analyses of several phenotypes known to have multiple associated methylation loci (age, sex, and smoking) in a discovery and a replication cohort. Among regions that were analysed by both methods, DMRPC identified 50% more genome-wide significant age-associated DMRs than coMethDMR. The replication rate for the loci that were identified by only DMRPC was higher than the rate for those that were identified by only coMethDMR (90% for DMRPC vs. 76% for coMethDMR). Furthermore, DMRPC identified replicable associations in regions of moderate between-CpG correlation which are typically not analysed by coMethDMR. For the analyses of sex and smoking, the advantage of DMRPC was less clear. In conclusion, DMRPC is a new powerful DMR discovery tool that retains power in genomic regions with moderate correlation across CpGs.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Epigenome , Phenotype , Smoking , CpG Islands , Genome-Wide Association Study
18.
Eur J Psychotraumatol ; 14(2): 2202054, 2023.
Article in English | MEDLINE | ID: mdl-37144662

ABSTRACT

Background: Cumulative exposure to violence can change the regulation of epigenetic and physiological markers. Although violence has been associated with accelerated cellular aging, little is known about associations with cardiac autonomic activity.Objective: The current study aimed to investigate the relationship of exposure to community and domestic violence (CDV) with vagal activity and epigenetic aging acceleration.Methods: A total of 86 adolescents (57% female) were evaluated and interviewed at two time-points in São Gonçalo (2014-2019), a Brazilian city with high levels of violence. Exposure to CDV was assessed in both time-points. GrimAge acceleration was calculated from saliva DNA methylation using Infinium HumanMethylation450K (Illumina) collected in the first assessment. Heart rate variability (HRV) was collected during two stress tasks at the second assessment.Results: The exposure to violence witnessed or directly experienced at home and in the community increased significantly (t = 4.87, p < .01) across two-time points, and males had reported higher violence exposure (t = 2.06, p = .043). Violence at 1st assessment was significantly associated with GrimAge acceleration (B = .039, p value = .043). Violence at both assessments were associated with HRV measured during the narration of the worst trauma (traumaHRV) (B = .009, p value = .039, and B = .007, p value = .024, 1st and 2nd assessment respectively). GrimAge acceleration was significantly associated with traumaHRV (B = .043, p value = .049), and HRV measured during a 3D roller coaster video (B = .061, p value = .024).Conclusions: We found relevant evidence that experiencing violence during adolescence is associated with epigenetic aging and stress-related vagal activity. Understanding these factors during this period could contribute to the development of early interventions for health promotion.HIGHLIGHTS Higher exposure to Community and domestic violence is associated with increased GrimAge acceleration.Higher GrimAge acceleration is associated with increased stress-related vagal activity.Exposure to community and domestic violence increased significantly over time.


Subject(s)
Domestic Violence , Exposure to Violence , Humans , Male , Adolescent , Female , Heart Rate , DNA Methylation/genetics , Acceleration
19.
Clin Epigenetics ; 15(1): 50, 2023 03 24.
Article in English | MEDLINE | ID: mdl-36964596

ABSTRACT

BACKGROUND: In peripheral blood, DNA methylation (DNAm) patterns in inflammatory bowel disease patients reflect inflammatory status rather than disease status. Here, we examined DNAm in diseased rectal mucosa from ulcerative colitis (UC) patients, focusing on constituent cell types with the goal of identifying therapeutic targets for UC other than the immune system. We profiled DNAm of rectal mucosal biopsies of pediatric UC at diagnosis (n = 211) and non-IBD control (n = 85) patients and performed epigenome-wide association studies (EWAS) of specific cell types to understand DNAm changes in epithelial, immune and fibroblast cells across disease states, course, and clinical outcomes. We also examined longitudinal analysis on follow-up samples (n = 73), and comparisons were made among patients with clinical outcomes including those undergoing colectomy versus those who did not. Additionally, we included RNA-seq from the same subjects to assess the impact of CpG sites on the transcription of nearby genes during the disease course. RESULTS: At diagnosis, UC rectal mucosa exhibited a lower proportion of epithelial cells and fibroblasts, and higher proportion of immune cells, in conjunction with variation in the DNAm pattern. While treatment had significant effects on the methylation signature of immune cells, its effects on fibroblasts and epithelial cells were attenuated. Individuals who required colectomy exhibited cell composition and DNAm patterns at follow-up more similar to disease onset than patients who did not require colectomy. Combining these results with gene expression profiles, we identify CpG sites whose methylation patterns are most consistent with a contribution to poor disease outcomes and could thus be potential therapeutic targets. CONCLUSIONS: Cell-specific epigenetic changes in the rectal mucosa in UC are associated with disease severity and outcome. Current therapeutics may more effectively target the immune than the epithelial and fibroblast compartments.


Subject(s)
Colitis, Ulcerative , Crohn Disease , Child , Humans , Colitis, Ulcerative/genetics , DNA Methylation , Crohn Disease/genetics , Rectum/surgery , Mucous Membrane/metabolism
20.
Neuropsychopharmacology ; 48(5): 773-780, 2023 04.
Article in English | MEDLINE | ID: mdl-36725867

ABSTRACT

Epigenetic alterations in DNA methylation might mediate gene expression effects of trauma underlying PTSD symptoms, or effects of PTSD on related health problems. PTSD is associated with all-cause morbidity and premature mortality, suggesting accelerated biological aging. We measured genome-wide DNA methylation (Illumina MethylationEPIC BeadChip) in whole blood in a treatment study for combat-related PTSD - "PROGrESS", a multisite RCT comparing sertraline plus enhanced medication management (SERT + EMM), prolonged exposure (PE) therapy plus placebo (PE + PLB), and the combination (SERT + PE). DNA methylation was measured in 140 US military veterans who served in Iraq and/or Afghanistan (112 current PTSD cases enrolled in a PTSD treatment study and 28 veterans without PTSD history controls), and also 59 non-trauma exposed controls at baseline posttreatment (24 weeks after baseline). Increased DNA methylation GrimAge acceleration (p = 8.8e-09) was observed in patients with PTSD compared to a pooled control group (trauma exposed and non-trauma exposed), suggesting a higher risk of premature mortality in those with PTSD. There was no difference in GrimAge acceleration between combat trauma and non-trauma exposed controls. No treatment-related changes in GrimAge acceleration were found in within-subject comparisons of PTSD patients pre- to post-treatment.


Subject(s)
Military Personnel , Stress Disorders, Post-Traumatic , Veterans , Humans , Aging , DNA Methylation , Sertraline/therapeutic use , Stress Disorders, Post-Traumatic/genetics , Stress Disorders, Post-Traumatic/therapy
SELECTION OF CITATIONS
SEARCH DETAIL