Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 17 de 17
1.
Histopathology ; 83(4): 647-656, 2023 Oct.
Article En | MEDLINE | ID: mdl-37366040

AIMS: Accurate assessment of human epidermal growth factor receptor 2 (HER2) expression by HER2 immunohistochemistry and in-situ hybridisation (ISH) is critical for the management of patients with breast cancer. The revised 2018 ASCO/CAP guidelines define 5 groups based on HER2 expression and copy number. Manual pathologist quantification by light microscopy of equivocal and less common HER2 ISH groups (groups 2-4) can be challenging, and there are no data on interobserver variability in reporting of these cases. We sought to determine whether a digital algorithm could improve interobserver variability in the assessment of difficult HER2 ISH cases. METHODS AND RESULTS: HER2 ISH was evaluated in a cohort enriched for less common HER2 patterns using standard light microscopy versus analysis of whole slide images using the Roche uPath HER2 dual ISH image analysis algorithm. Standard microscopy demonstrated significant interobserver variability with a Fleiss's kappa value of 0.471 (fair-moderate agreement) improving to 0.666 (moderate-good) with the use of the algorithm. For HER2 group designation (groups 1-5), there was poor-moderate reliability between pathologists by microscopy [intraclass correlation coefficient (ICC) = 0.526], improving to moderate-good agreement (ICC = 0.763) with the use of the algorithm. In subgroup analysis, the algorithm improved concordance particularly in groups 2, 4 and 5. Time to enumerate cases was also significantly reduced. CONCLUSION: This work demonstrates the potential of a digital image analysis algorithm to improve the concordance of pathologist HER2 amplification status reporting in less common HER2 groups. This has the potential to improve therapy selection and outcomes for patients with HER2-low and borderline HER2-amplified breast cancers.


Breast Neoplasms , Humans , Female , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , In Situ Hybridization, Fluorescence/methods , Reproducibility of Results , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , Algorithms , Biomarkers, Tumor/metabolism
2.
Theranostics ; 12(16): 6915-6930, 2022.
Article En | MEDLINE | ID: mdl-36276654

Rationale: An antibody-drug conjugate (ADC) is a targeted therapy consisting of a cytotoxic payload that is linked to an antibody which targets a protein enriched on malignant cells. Multiple ADCs are currently used clinically as anti-cancer agents significantly improving patient survival. Herein, we evaluated the rationale of targeting the cell surface oncoreceptor CUB domain-containing protein 1 (CDCP1) using ADCs and assessed the efficacy of CDCP1-directed ADCs against a range of malignant tumors. Methods: CDCP1 mRNA expression was evaluated using large transcriptomic datasets of normal/tumor samples for 23 types of cancer and 15 other normal organs, and CDCP1 protein expression was examined in 34 normal tissues, >300 samples from six types of cancer, and in 49 cancer cell lines. A recombinant human/mouse chimeric anti-CDCP1 antibody (ch10D7) was labelled with 89Zirconium or monomethyl auristatin E (MMAE) and tested in multiple pre-clinical cancer models including 36 cancer cell lines and three mouse xenograft models. Results: Analysis of CDCP1 expression indicates elevated CDCP1 expression in the majority of the cancers and restricted expression in normal human tissues. Antibody ch10D7 demonstrates a high affinity and specificity for CDCP1 inducing cell signalling via Src accompanied by rapid internalization of ch10D7/CDCP1 complexes in cancer cells. 89Zirconium-labelled ch10D7 accumulates in CDCP1 expressing cells enabling detection of pancreatic cancer xenografts in mice by PET imaging. Cytotoxicity of MMAE-labelled ch10D7 against kidney, colorectal, lung, ovarian, pancreatic and prostate cancer cells in vitro, correlates with the level of CDCP1 on the plasma membrane. ch10D7-MMAE displays robust anti-tumor effects against mouse xenograft models of pancreatic, colorectal and ovarian cancer. Conclusion: CDCP1 directed imaging agents will be useful for selecting cancer patients for personalized treatment with cytotoxin-loaded CDCP1 targeting agents including antibody-drug conjugates.


Antineoplastic Agents , Colorectal Neoplasms , Immunoconjugates , Male , Female , Humans , Animals , Mice , Immunoconjugates/pharmacology , Zirconium , Cell Line, Tumor , Xenograft Model Antitumor Assays , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cytotoxins , RNA, Messenger , Antigens, Neoplasm , Cell Adhesion Molecules
3.
J Pathol Clin Res ; 8(6): 521-537, 2022 11.
Article En | MEDLINE | ID: mdl-35866380

Endometrial carcinoma (EC) is the most common gynecological malignancy and fibroblast growth factor receptor 2 (FGFR2) is a frequently dysregulated receptor tyrosine kinase. FGFR2b and FGFR2c are the two main splice isoforms of FGFR2 and are normally localized in epithelial and mesenchymal cells, respectively. Previously, we demonstrated that FGFR2c mRNA expression was associated with aggressive tumor characteristics, shorter progression-free survival (PFS), and disease-specific survival (DSS) in endometrioid ECs (EECs). The objectives of this study were to investigate the spatial expression of FGFR2b in normal and hyperplasia with and without atypia of human endometrium and to assess the prognostic significance of FGFR2b expression in EC. FGFR2b and FGFR2c mRNA expression was evaluated in normal (proliferative [n = 10], secretory [n = 15], and atrophic [n = 10] endometrium), hyperplasia with and without atypia (n = 19) as well as two patient cohorts of EC samples (discovery [n = 78] and Vancouver [n = 460]) using isoform-specific BaseScope RNA in situ hybridization assays. Tumors were categorized based on FGFR2 isoform expression (one, both, or neither) and categories were correlated with clinicopathologic markers, molecular subtypes, and clinical outcomes. The FGFR2b splice isoform was exclusively expressed in the epithelial compartment of normal endometrium and hyperplasia without atypia. We observed FGFR2c expression at the basalis layer of glands in 33% (3/9) of hyperplasia with atypia. In patients with EEC, FGFR2b+/FGFR2c- expression was found in 48% of the discovery cohort and 35% of the validation Vancouver cohort. In univariate analyses, tumors with FGFR2b+/FGFR2c- expression had longer PFS (hazard ratio [HR] 0.265; 95% CI 0.145-0.423; log-rank p < 0.019) and DSS (HR 0.31; 95% CI 0.149-0.622; log-rank p < 0.001) compared to tumors with FGFR2b-/FGFR2c+ expression in the large EEC Vancouver cohort. In multivariable Cox regression analyses, tumors with FGFR2b+/FGFR2c- expression were significantly associated with longer DSS (HR 0.37; 95% CI 0.153-0.872; log-rank p < 0.023) compared to FGFR2b-/FGFR2c+ tumors. In conclusion, FGFR2b+/FGFR2c- expression is associated with favorable clinicopathologic markers and clinical outcomes suggesting that FGFR2b could play a role in tailoring the management of EEC patients in the clinic if these findings are confirmed in an independent cohort.


Carcinoma, Endometrioid , Endometrial Neoplasms , Carcinoma, Endometrioid/genetics , Endometrial Neoplasms/genetics , Female , Humans , Hyperplasia , Prognosis , Protein Isoforms/genetics , RNA , RNA, Messenger , Receptor, Fibroblast Growth Factor, Type 2/genetics
4.
Contrast Media Mol Imaging ; 2021: 3153278, 2021.
Article En | MEDLINE | ID: mdl-34621145

Colorectal cancer (CRC) is the third most common malignancy in the world, with 22% of patients presenting with metastatic disease and a further 50% destined to develop metastasis. Molecular imaging uses antigen-specific ligands conjugated to radionuclides to detect and characterise primary cancer and metastases. Expression of the cell surface protein CDCP1 is increased in CRC, and here we sought to assess whether it is a suitable molecular imaging target for the detection of this cancer. CDCP1 expression was assessed in CRC cell lines and a patient-derived xenograft to identify models suitable for evaluation of radio-labelled 10D7, a CDCP1-targeted, high-affinity monoclonal antibody, for preclinical molecular imaging. Positron emission tomography-computed tomography was used to compare zirconium-89 (89Zr)-10D7 avidity to a nonspecific, isotype control 89Zr-labelled IgGκ1 antibody. The specificity of CDCP1-avidity was further confirmed using CDCP1 silencing and blocking models. Our data indicate high avidity and specificity for of 89Zr-10D7 in CDCP1 expressing tumors at. Significantly higher levels than normal organs and blood, with greatest tumor avidity observed at late imaging time points. Furthermore, relatively high avidity is detected in high CDCP1 expressing tumors, with reduced avidity where CDCP1 expression was knocked down or blocked. The study supports CDCP1 as a molecular imaging target for CRC in preclinical PET-CT models using the radioligand 89Zr-10D7.


Antigens, Neoplasm/genetics , Cell Adhesion Molecules/genetics , Colorectal Neoplasms/genetics , Positron Emission Tomography Computed Tomography , Radioisotopes/pharmacology , Zirconium/pharmacology , Animals , Antigens, Neoplasm/isolation & purification , Cell Adhesion Molecules/isolation & purification , Colorectal Neoplasms/diagnostic imaging , Colorectal Neoplasms/pathology , Gene Expression Regulation, Neoplastic/drug effects , HCT116 Cells , Heterografts , Humans , Ligands , Mice
5.
PLoS Genet ; 17(6): e1009605, 2021 06.
Article En | MEDLINE | ID: mdl-34081701

Homozygous mutation of the Csf1r locus (Csf1rko) in mice, rats and humans leads to multiple postnatal developmental abnormalities. To enable analysis of the mechanisms underlying the phenotypic impacts of Csf1r mutation, we bred a rat Csf1rko allele to the inbred dark agouti (DA) genetic background and to a Csf1r-mApple reporter transgene. The Csf1rko led to almost complete loss of embryonic macrophages and ablation of most adult tissue macrophage populations. We extended previous analysis of the Csf1rko phenotype to early postnatal development to reveal impacts on musculoskeletal development and proliferation and morphogenesis in multiple organs. Expression profiling of 3-week old wild-type (WT) and Csf1rko livers identified 2760 differentially expressed genes associated with the loss of macrophages, severe hypoplasia, delayed hepatocyte maturation, disrupted lipid metabolism and the IGF1/IGF binding protein system. Older Csf1rko rats developed severe hepatic steatosis. Consistent with the developmental delay in the liver Csf1rko rats had greatly-reduced circulating IGF1. Transfer of WT bone marrow (BM) cells at weaning without conditioning repopulated resident macrophages in all organs, including microglia in the brain, and reversed the mutant phenotypes enabling long term survival and fertility. WT BM transfer restored osteoclasts, eliminated osteopetrosis, restored bone marrow cellularity and architecture and reversed granulocytosis and B cell deficiency. Csf1rko rats had an elevated circulating CSF1 concentration which was rapidly reduced to WT levels following BM transfer. However, CD43hi non-classical monocytes, absent in the Csf1rko, were not rescued and bone marrow progenitors remained unresponsive to CSF1. The results demonstrate that the Csf1rko phenotype is autonomous to BM-derived cells and indicate that BM contains a progenitor of tissue macrophages distinct from hematopoietic stem cells. The model provides a unique system in which to define the pathways of development of resident tissue macrophages and their local and systemic roles in growth and organ maturation.


Fatty Liver/genetics , Macrophages/metabolism , Musculoskeletal Abnormalities/genetics , Musculoskeletal Development/genetics , Osteopetrosis/genetics , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Animals , Bone Marrow/metabolism , Bone Marrow/pathology , Bone Marrow Transplantation , Disease Models, Animal , Embryo, Mammalian , Fatty Liver/metabolism , Fatty Liver/pathology , Fatty Liver/therapy , Female , Gene Expression Regulation, Developmental , Gene Knockout Techniques , Genes, Reporter , Humans , Insulin-Like Growth Factor Binding Proteins/deficiency , Insulin-Like Growth Factor Binding Proteins/genetics , Insulin-Like Growth Factor I/deficiency , Insulin-Like Growth Factor I/genetics , Lipid Metabolism , Liver/metabolism , Liver/pathology , Macrophages/pathology , Male , Musculoskeletal Abnormalities/metabolism , Musculoskeletal Abnormalities/pathology , Musculoskeletal Abnormalities/therapy , Osteopetrosis/metabolism , Osteopetrosis/pathology , Osteopetrosis/therapy , Rats , Rats, Transgenic , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/deficiency
7.
Cancers (Basel) ; 13(7)2021 Apr 03.
Article En | MEDLINE | ID: mdl-33916719

Women with atypical hyperplasia (AH) or well-differentiated early-stage endometrioid endometrial carcinoma (EEC) who wish to retain fertility and/or with comorbidities precluding surgery, are treated with progestin. Clinically approved predictive biomarkers for progestin therapy remain an unmet need. The objectives of this study were to document the overall response rate (ORR) of levonorgestrel intrauterine device (LNG-IUD) treatment, and determine the association of FGFR2b and FGFR2c expression with treatment outcome. BaseScope RNA ISH assay was utilized to detect expression of FGFR2b and FGFR2c mRNA in the diagnostic biopsies of 89 women (40 AH and 49 EEC) treated with LNG-IUD. Detailed clinical follow-up was available for 69 women which revealed an overall response rate (ORR) of 44% (30/69) with a higher ORR seen in AH (64%) compared to EEC (23%). The recurrence rate in women who initially responded to LNG-IUD was 10/30 (33.3%). RNA ISH was successful in 72 patients and showed FGFR2c expression in 12/72 (16.7%) samples. In the 59 women with detailed clinical follow-up and RNA-ISH data, women with tumours expressing FGFR2c were 5-times more likely to have treatment failure in both univariable (HR 5.08, p < 0.0001) and multivariable (HR 4.5, p < 0.002) Cox regression analyses. In conclusion, FGFR2c expression appears to be strongly associated with progestin treatment failure, albeit the ORR is lower in this cohort than previously reported. Future work to validate these findings in an independent multi-institutional cohort is needed.

8.
Breast Cancer Res ; 22(1): 136, 2020 12 04.
Article En | MEDLINE | ID: mdl-33276802

BACKGROUND: Breast cancers acquire aggressive capabilities via epithelial to mesenchymal transition (EMT), in which various integrins/integrin-linked kinase signalling are upregulated. METHODS: We investigated this in two patient-derived xenografts (PDXs) developed from breast-to-bone metastases, and its functional significance in a breast cancer cell line system. ED03 and EDW01 PDXs were grown subcutaneously in immunocompromised SCID mice through 11 passages and 7 passages, respectively. Tumour tissue was assessed using immunohistochemistry (IHC) for oestrogen receptor (ER)-alpha, E-cadherin, vimentin, Twist1, beta-catenin, P120-RasGAP, CD44, CD24 and Ki67, and RT-qPCR of EMT-related factors (CDH1, VIM, CD44, CD24), integrins beta 1 (ITGB1), alpha 2 (ITGA2) and ILK. Integrin and ILK expression in epidermal growth factor (EGF)-induced EMT of the PMC42-ET breast cancer cell line was assessed by RT-qPCR and Western blotting, as were the effects of their transient knockdown via small interfering RNA +/- EGF. Cell migration, changes in cell morphology and adhesion of siRNA-transfected PMC42-ET cells to various extracellular matrix (ECM) substrates was assessed. RESULTS: The ED03 (ER+/PR-/HER2-/lobular) and EDW01 (ER+/PR-/HER2-/ductal) PDXs were both classified as molecular subtype luminal A. ED03 xenografts exhibited mutated E-cadherin with minimal expression, but remained vimentin-negative across all passages. In EDW01, the hypoxic indicator gene CAIX and Twist1 were co-ordinately upregulated at passages 4-5, corresponding with a decrease in E-cadherin. At passages 6-7, VIM was upregulated along with ITGB1 and ITGA2, consistent with an increasing EMT. The ED03 PDX displayed minimal change over passages in mice, for all genes examined. ILK, ITGB1 and ITGA2 mRNAs were also increased in the EGF-induced EMT of PMC42-ET cells (in which CDH1 was downregulated) although siRNA against these targets revealed that this induction was not necessary for the observed EMT. However, their knockdown significantly reduced EMT-associated adhesion and Transwell migration. CONCLUSION: Our data suggest that despite an increase in ITGA2 and ITGB1 gene expression in the EMT exhibited by EDW01 PDX over multiple generations, this pathway may not necessarily drive the EMT process.


Bone Neoplasms/genetics , Breast Neoplasms/genetics , Carcinoma, Ductal, Breast/genetics , Epithelial-Mesenchymal Transition/genetics , Integrin alpha2/genetics , Integrin beta1/genetics , Adult , Animals , Bone Neoplasms/secondary , Breast/pathology , Breast Neoplasms/pathology , Carcinoma, Ductal, Breast/secondary , Cell Line, Tumor , Cell Movement/genetics , Female , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Humans , Mice , Protein Serine-Threonine Kinases/genetics , Up-Regulation , Xenograft Model Antitumor Assays
9.
Front Cell Dev Biol ; 8: 599, 2020.
Article En | MEDLINE | ID: mdl-32760722

Mammographic density (MD) is a strong and independent factor for breast cancer (BC) risk and is increasingly associated with BC progression. We have previously shown in mice that high MD, which is characterized by the preponderance of a fibrous stroma, facilitates BC xenograft growth and metastasis. This stroma is rich in extracellular matrix (ECM) factors, including heparan sulfate proteoglycans (HSPGs), such as the BC-associated syndecan-1 (SDC1). These proteoglycans tether growth factors, which are released by heparanase (HPSE). MD is positively associated with estrogen exposure and, in cell models, estrogen has been implicated in the upregulation of HPSE, the activity of which promotes SDC expression. Herein we describe a novel measurement approach (single-sided NMR) using a patient-derived explant (PDE) model of normal human (female) mammary tissue cultured ex vivo to investigate the role(s) of HPSE and SDC1 on MD. Relative HSPG gene and protein analyses determined in patient-paired high vs. low MD tissues identified SDC1 and SDC4 as potential mediators of MD. Using the PDE model we demonstrate that HPSE promotes SDC1 rather than SDC4 expression and cleavage, leading to increased MD. In this model system, synstatin (SSTN), an SDC1 inhibitory peptide designed to decouple SDC1-ITGαvß3 parallel collagen alignment, reduced the abundance of fibrillar collagen as assessed by picrosirius red viewed under polarized light, and reduced MD. Our results reveal a potential role for HPSE in maintaining MD via its direct regulation of SDC1, which in turn physically tethers collagen into aligned fibers characteristic of MD. We propose that inhibitors of HPSE and/or SDC1 may afford an opportunity to reduce MD in high BC risk individuals and reduce MD-associated BC progression in conjunction with established BC therapies.

10.
Clin Cancer Res ; 26(17): 4569-4580, 2020 09 01.
Article En | MEDLINE | ID: mdl-32414751

PURPOSE: The two most common molecular subtypes of endometrial cancers, mismatch repair deficient (MMRd) and p53 wild-type (p53wt) comprise the majority of endometrial cancers and have intermediate prognoses where additional risk stratification biomarkers are needed. Isoform switching of FGFR2 from FGFR2b to FGFR2c (normally expressed in mesenchymal cells), has been reported in other solid carcinomas. The objective of this study was to investigate the role of FGFR2c in risk stratification of endometrial cancer. EXPERIMENTAL DESIGN: We have developed and optimized a BaseScope RNA ISH assay to detect FGFR2c. FGFR2c expression was determined in a preliminary screening cohort of 78 endometrial cancers and a clinically and molecularly annotated Vancouver cohort (n = 465). Cox regression model analyses were performed to assess the prognostic value of FGFR2c. RESULTS: Univariate and multivariate analyses revealed FGFR2c expression was significantly associated with shorter disease-specific survival (DSS) and progression-free survival (PFS) in endometrioid endometrial cancer (EEC, n = 302). Notably, FGFR2c expression was significantly associated with shorter PFS and DSS in patients with grade 3 EECs (P < 0.003 and P < 0.002) and the European Society Medical Oncology (ESMO) high-risk group (P < 0.0001 and P < 0.002), respectively. Moreover, within the MMRd subtype, FGFR2c expression was significantly associated with shorter PFS (P < 0.048) and DSS (P < 0.001). CONCLUSIONS: FGFR2c expression appears an independent prognostic biomarker in patients with EEC and further discerns the outcomes within grade 3 tumors, ESMO high-risk groups, as well as within the MMRd and p53wt subtypes. FGFR2c inclusion into future molecular subtyping can further refine risk stratification of EEC.


Biomarkers, Tumor/metabolism , Endometrial Neoplasms/mortality , Endometrium/pathology , Receptor, Fibroblast Growth Factor, Type 2/metabolism , Aged , Biomarkers, Tumor/genetics , DNA Mismatch Repair , Endometrial Neoplasms/diagnosis , Endometrial Neoplasms/genetics , Endometrial Neoplasms/surgery , Endometrium/surgery , Female , Follow-Up Studies , Gene Expression Regulation, Neoplastic , Humans , Hysterectomy , Middle Aged , Neoplasm Staging , Prognosis , Progression-Free Survival , Protein Isoforms/genetics , Protein Isoforms/metabolism , Receptor, Fibroblast Growth Factor, Type 2/genetics , Risk Assessment
11.
Cancers (Basel) ; 12(4)2020 Apr 03.
Article En | MEDLINE | ID: mdl-32260077

High stage and recurrent ovarian clear cell carcinoma (OCC) are associated with poor prognosis and resistance to chemotherapy. A distinguishing histological feature of OCC is abundant cytoplasmic stores of glucose, in the form of glycogen, that can be mobilized for cellular metabolism. Here, we report the effect on preclinical models of OCC of disrupting glycogen utilization using the glucose analogue 2-deoxy-D-glucose (2DG). At concentrations significantly lower than previously reported for other cancers, 2DG markedly improves the efficacy in vitro of carboplatin chemotherapy against chemo-sensitive TOV21G and chemo-resistant OVTOKO OCC cell lines, and this is accompanied by the depletion of glycogen. Of note, 2DG doses-of more than 10-fold lower than previously reported for other cancers-significantly improve the efficacy of carboplatin against cell line and patient-derived xenograft models in mice that mimic the chemo-responsiveness of OCC. These findings are encouraging, in that 2DG doses, which are substantially lower than previously reported to cause adverse events in cancer patients, can safely and significantly improve the efficacy of carboplatin against OCC. Our results thus justify clinical trials to evaluate whether low dose 2DG improves the efficacy of carboplatin in OCC patients.

12.
Theranostics ; 10(9): 4116-4133, 2020.
Article En | MEDLINE | ID: mdl-32226543

Background: CUB domain-containing protein 1 (CDCP1) is a cell surface receptor regulating key signalling pathways in malignant cells. CDCP1 has been proposed as a molecular target to abrogate oncogenic signalling pathways and specifically deliver anti-cancer agents to tumors. However, the development of CDCP1-targeting agents has been questioned by its frequent proteolytic processing which was thought to result in shedding of the CDCP1 extracellular domain limiting its targetability. In this study, we investigated the relevance of targeting CDCP1 in the context of pancreatic ductal adenocarcinoma (PDAC) and assess the impact of CDCP1 proteolysis on the effectiveness of CDCP1 targeting agents. Methods: The involvement of CDCP1 in PDAC progression was assessed by association analysis in several PDAC cohorts and the proteolytic processing of CDCP1 was evaluated in PDAC cell lines and patient-derived cells. The consequences of CDCP1 proteolysis on its targetability in PDAC cells was assessed using immunoprecipitation, immunostaining and biochemical assays. The involvement of CDCP1 in PDAC progression was examined by loss-of-function in vitro and in vivo experiments employing PDAC cells expressing intact or cleaved CDCP1. Finally, we generated antibody-based imaging and therapeutic agents targeting CDCP1 to demonstrate the feasibility of targeting this receptor for detection and treatment of PDAC tumors. Results: High CDCP1 expression in PDAC is significantly associated with poorer patient survival. In PDAC cells proteolysis of CDCP1 does not always result in the shedding of CDCP1-extracellular domain which can interact with membrane-bound CDCP1 allowing signal transduction between the different CDCP1-fragments. Targeting CDCP1 impairs PDAC cell functions and PDAC tumor growth independently of CDCP1 cleavage status. A CDCP1-targeting antibody is highly effective at delivering imaging radionuclides and cytotoxins to PDAC cells allowing specific detection of tumors by PET/CT imaging and superior anti-tumor effects compared to gemcitabine in in vivo models. Conclusion: Independent of its cleavage status, CDCP1 exerts oncogenic functions in PDAC and has significant potential to be targeted for improved radiological staging and treatment of this cancer. Its elevated expression by most PDAC tumors and lack of expression by normal pancreas and other major organs, suggest that targeting CDCP1 could benefit a significant proportion of PDAC patients. These data support the further development of CDCP1-targeting agents as personalizable tools for effective imaging and treatment of PDAC.


Antigens, Neoplasm/metabolism , Carcinoma, Pancreatic Ductal/metabolism , Cell Adhesion Molecules/metabolism , Pancreatic Neoplasms/metabolism , Animals , Biomarkers, Tumor/metabolism , Carcinoma, Pancreatic Ductal/therapy , Cell Line, Tumor , Disease Progression , Gene Expression Regulation, Neoplastic , Humans , Mice , Pancreatic Neoplasms/therapy , Precision Medicine , Proteolysis
13.
Mol Oncol ; 14(1): 105-128, 2020 01.
Article En | MEDLINE | ID: mdl-31630475

Kallikrein-related peptidase 14 (KLK14) is one of the several secreted KLK serine proteases involved in prostate cancer (PCa) pathogenesis. While relatively understudied, recent reports have identified KLK14 as overexpressed during PCa development. However, the modulation of KLK14 expression during PCa progression and the molecular and biological functions of this protease in the prostate tumor microenvironment remain unknown. To determine the modulation of KLK14 expression during PCa progression, we analyzed the expression levels of KLK14 in patient samples using publicly available databases and immunohistochemistry. In order to delineate the molecular mechanisms involving KLK14 in PCa progression, we integrated proteomic, transcriptomic, and in vitro assays with the goal to identify substrates, related-signaling pathways, and functional roles of this protease. We showed that KLK14 expression is elevated in advanced PCa, and particularly in metastasis. Additionally, KLK14 levels were found to be decreased in PCa tissues from patients responsive to neoadjuvant therapy compared to untreated patients. Furthermore, we also identified that KLK14 expression reoccurred in patients who developed castrate-resistant PCa. The combination of proteomic and transcriptomic analysis as well as functional assays revealed several new KLK14 substrates (agrin, desmoglein 2, vitronectin, laminins) and KLK14-regulated genes (Interleukin 32, midkine, SRY-Box 9), particularly an involvement of the mitogen-activated protein kinase 1 and interleukin 1 receptor pathways, and an involvement of KLK14 in the regulation of cellular migration, supporting its involvement in aggressive features of PCa progression. In conclusion, our work showed that KLK14 expression is associated with the development of aggressive PCa suggesting that targeting this protease could offer a novel route to limit the progression of prostate tumors. Additional work is necessary to determine the benefits and implications of targeting/cotargeting KLK14 in PCa as well as to determine the potential use of KLK14 expression as a predictor of PCa aggressiveness or response to treatment.


Cell Movement/genetics , Gene Expression Regulation, Neoplastic/genetics , Kallikreins/metabolism , Neoplasm Metastasis/genetics , Prostatic Neoplasms/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , Chromatography, High Pressure Liquid , Databases, Genetic , Down-Regulation , Humans , Immunohistochemistry , Kallikreins/genetics , Male , Neoadjuvant Therapy , Prostatic Neoplasms/enzymology , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Proteomics , Signal Transduction/genetics , Tandem Mass Spectrometry , Transcriptome , Tumor Microenvironment/genetics , Up-Regulation
14.
Br J Cancer ; 119(11): 1316-1325, 2018 11.
Article En | MEDLINE | ID: mdl-30410061

BACKGROUND: Recent pre-clinical studies indicate that activated progesterone receptor (PR) (particularly the PR-B isoform) binds to oestrogen receptor-α (ER) and reprogrammes transcription toward better breast cancer outcomes. We investigated whether ER and PR-B interactions were present in breast tumours and associated with clinical parameters including response to aromatase inhibitors. METHODS: We developed a proximity ligation assay to detect ER and PR-B (ER:PR-B) interactions in formalin-fixed paraffin-embedded tissues. The assay was validated in a cell line and patient-derived breast cancer explants and applied to a cohort of 229 patients with ER-positive and HER2-negative breast cancer with axillary nodal disease. RESULTS: Higher frequency of ER:PR-B interaction correlated with increasing patient age, lower tumour grade and mitotic index. A low frequency of ER:PR-B interaction was associated with higher risk of relapse. In multivariate analysis, ER:PR-B interaction frequency was an independent predictive factor for relapse, whereas PR expression was not. In subset analysis, low frequency of ER:PR-B interaction was predictive of relapse on adjuvant aromatase inhibitor (HR 4.831, p = 0.001), but not on tamoxifen (HR 1.043, p = 0.939). CONCLUSIONS: This study demonstrates that ER:PR-B interactions have utility in predicting patient response to adjuvant AI therapy.


Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Estrogen Receptor alpha/metabolism , Receptors, Progesterone/metabolism , Adult , Aged , Breast Neoplasms/pathology , Cell Line, Tumor , Cohort Studies , Disease-Free Survival , Female , Humans , Immunohistochemistry , Middle Aged , Neoplasm Recurrence, Local
15.
J Clin Pathol ; 70(11): 954-960, 2017 Nov.
Article En | MEDLINE | ID: mdl-28416639

AIMS: Progesterone receptor (PR) expression is prognostic in early stage breast cancer. There are several reports of discordant expression between primary tumour and axillary lymph node (ALN) metastasis expression of oestrogen receptor (ER) and PR. We sought to determine whether expression of these biomarkers in the synchronous ALN metastases of ER positive (+), HER2 negative (-) breast cancer could provide more accurate prognostic information. METHODS: The retrospective cohort included 229 patients from a single institution with ER+, HER2- breast cancer who had synchronous ALN metastatic disease (2005-2014). PR expression was correlated with relapse-free survival, and subset analysis was performed for patients who received adjuvant tamoxifen or an aromatase inhibitor. RESULTS: One patient had an ER+ primary tumour, which was ER- in the ALN metastasis. 27 (11.3%) were PR- in the primary tumour and 56 (23.6%) in the ALN metastasis. The predominant change was from PR+ in the primary tumour to PR- in the lymph node. Absence of PR expression in the ALN was significantly associated with relapse; however, this was not the case in the primary tumour. In a subset analysis of patients taking adjuvant endocrine therapy, poorer prognosis was limited to those with PR- metastases on tamoxifen (HR=5.203, 95% CI 1.649 to 16.416, p=0.005). No significant prognostic effect of PR- metastases in patients taking aromatase inhibitors was seen (HR=1.519, 95% CI 0.675 to 3.418, p=0.312). CONCLUSIONS: Evaluation of PR expression in ALN metastasis may enable prediction of patients who are less likely to benefit from adjuvant tamoxifen. This study should be replicated in other cohorts.


Biomarkers, Tumor/analysis , Breast Neoplasms/drug therapy , Estrogen Antagonists/therapeutic use , Lymph Nodes/chemistry , Neoplasm Recurrence, Local , Receptor, ErbB-2/analysis , Receptors, Estrogen/analysis , Receptors, Progesterone/analysis , Tamoxifen/therapeutic use , Adult , Aged , Aged, 80 and over , Aromatase Inhibitors/therapeutic use , Breast Neoplasms/chemistry , Breast Neoplasms/pathology , Chemotherapy, Adjuvant , Disease-Free Survival , Female , Humans , Immunohistochemistry , Kaplan-Meier Estimate , Lymph Nodes/pathology , Lymphatic Metastasis , Middle Aged , Multivariate Analysis , Neoadjuvant Therapy , Predictive Value of Tests , Proportional Hazards Models , Queensland , Retrospective Studies , Risk Factors , Time Factors , Tissue Array Analysis , Treatment Outcome
16.
PLoS One ; 9(2): e88955, 2014.
Article En | MEDLINE | ID: mdl-24563687

The stabilisation of HIF-α is central to the transcriptional response of animals to hypoxia, regulating the expression of hundreds of genes including those involved in angiogenesis, metabolism and metastasis. HIF-α is degraded under normoxic conditions by proline hydroxylation, which allows for recognition and ubiquitination by the von-Hippel-Lindau (VHL) E3 ligase complex. The aim of our study was to investigate the posttranslational modification of HIF-1α in tumours, to assess whether there are additional mechanisms besides reduced hydroxylation leading to stability. To this end we optimised antibodies against the proline-hydroxylated forms of HIF-1α for use in formalin fixed paraffin embedded (FFPE) immunohistochemistry to assess effects in tumour cells in vivo. We found that HIF-1α proline-hydroxylated at both VHL binding sites (Pro402 and Pro564), was present in hypoxic regions of a wide range of tumours, tumour xenografts and in moderately hypoxic cells in vitro. Staining for hydroxylated HIF-1α can identify a subset of breast cancer patients with poorer prognosis and may be a better marker than total HIF-1α levels. The expression of unhydroxylated HIF-1α positively correlates with VHL in breast cancer suggesting that VHL may be rate-limiting for HIF degradation. Our conclusions are that the degradation of proline-hydroxylated HIF-1α may be rate-limited in tumours and therefore provides new insights into mechanisms of HIF upregulation. Persistence of proline-hydroxylated HIF-1α in perinecrotic areas suggests there is adequate oxygen to support prolyl hydroxylase domain (PHD) activity and proline-hydroxylated HIF-1α may be the predominant form associated with the poorer prognosis that higher levels of HIF-1α confer.


Gene Expression Regulation, Neoplastic , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Neoplasms/metabolism , Up-Regulation , Animals , Binding Sites , Breast Neoplasms/pathology , Cell Line, Tumor , Female , Humans , Hydroxylation , Kaplan-Meier Estimate , MCF-7 Cells , Mice , Mice, Inbred BALB C , Neoplasm Transplantation , Procollagen-Proline Dioxygenase/metabolism , Prognosis , Proline/metabolism
17.
Cancer Res ; 71(17): 5635-45, 2011 Sep 01.
Article En | MEDLINE | ID: mdl-21737487

microRNA expression profiling plays an emerging role in cancer classification and identification of therapeutic strategies. In this study, we have evaluated the benefits of a joint microRNA-mRNA analysis in breast cancer. Matched mRNA and microRNA global expression profiling was conducted in a well-annotated cohort of 207 cases with complete 10-year follow-up. Penalized Cox regression including microRNA expression, mRNA expression, and clinical covariates was used to identify microRNAs associated with distant relapse-free survival (DRFS) that provide independent prognostic information, and are not simply surrogates of previously identified prognostic covariates. Penalized regression was chosen to prevent overfitting. Furthermore, microRNA-mRNA relationships were explored by global expression analysis, and exploited to validate results in several published cohorts (n = 592 with DRFS, n = 1,050 with recurrence-free survival). Four microRNAs were independently associated with DRFS in estrogen receptor (ER)-positive (3 novel and 1 known; miR-128a) and 6 in ER-negative (5 novel and 1 known; miR-210) cases. Of the latter, miR-342, -27b, and -150 were prognostic also in triple receptor-negative tumors. Coordinated expression of predicted target genes and prognostic microRNAs strengthened these results, most significantly for miR-210, -128a, and -27b, whose targets were prognostic in meta-analysis of several cohorts. In addition, miR-210 and -128a showed coordinated expression with their cognate pri-microRNAs, which were themselves prognostic in independent cohorts. Our integrated microRNA-mRNA global profiling approach has identified microRNAs independently associated with prognosis in breast cancer. Furthermore, it has validated known and predicted microRNA-target interactions, and elucidated their association with key pathways that could represent novel therapeutic targets.


Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Gene Expression Profiling , MicroRNAs/genetics , RNA, Messenger/genetics , Breast Neoplasms/genetics , Disease Progression , Disease-Free Survival , Female , Gene Expression Regulation, Neoplastic , Humans , Neoplasm Recurrence, Local/genetics , Prognosis
...