Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 887
Filter
1.
bioRxiv ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38979211

ABSTRACT

Background: Depression is a leading cause of disability worldwide yet its underlying factors, particularly microbial associations, are poorly understood. Methods: We examined the longitudinal interplay between the microbiome and immune system in the context of depression during an immersive psychosocial intervention. 142 multi-omics samples were collected from 52 well-characterized participants before, during, and three months after a nine-day inquiry-based stress reduction program. Results: We found that depression was associated with both an increased presence of putatively pathogenic bacteria and reduced microbial beta-diversity. Following the intervention, we observed reductions in neuroinflammatory cytokines and improvements in several mental health indicators. Interestingly, participants with a Prevotella-dominant microbiome showed milder symptoms when depressed, along with a more resilient microbiome and more favorable inflammatory cytokine profile, including reduced levels of CXCL-1. Conclusions: Our findings reveal a protective link between the Prevotella-dominant microbiome and depression, associated with a less inflammatory environment and moderated symptoms. These insights, coupled with observed improvements in neuroinflammatory markers and mental health from the intervention, highlight potential avenues for microbiome-targeted therapies in depression management.

2.
Nat Commun ; 15(1): 5956, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39009581

ABSTRACT

DNA methylation (DNAm) is one of the most reliable biomarkers of aging across mammalian tissues. While the age-dependent global loss of DNAm has been well characterized, DNAm gain is less characterized. Studies have demonstrated that CpGs which gain methylation with age are enriched in Polycomb Repressive Complex 2 (PRC2) targets. However, whole-genome examination of all PRC2 targets as well as determination of the pan-tissue or tissue-specific nature of these associations is lacking. Here, we show that low-methylated regions (LMRs) which are highly bound by PRC2 in embryonic stem cells (PRC2 LMRs) gain methylation with age in all examined somatic mitotic cells. We estimated that this epigenetic change represents around 90% of the age-dependent DNAm gain genome-wide. Therefore, we propose the "PRC2-AgeIndex," defined as the average DNAm in PRC2 LMRs, as a universal biomarker of cellular aging in somatic cells which can distinguish the effect of different anti-aging interventions.


Subject(s)
Aging , Biomarkers , DNA Methylation , Epigenesis, Genetic , Polycomb Repressive Complex 2 , Rejuvenation , Animals , Aging/metabolism , Aging/genetics , Polycomb Repressive Complex 2/metabolism , Polycomb Repressive Complex 2/genetics , Rejuvenation/physiology , Biomarkers/metabolism , Humans , Mice , Cellular Senescence/genetics , CpG Islands , Embryonic Stem Cells/metabolism , Male , Female
3.
Science ; 384(6701): eadh9979, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38870291

ABSTRACT

Understanding cellular architectures and their connectivity is essential for interrogating system function and dysfunction. However, we lack technologies for mapping the multiscale details of individual cells and their connectivity in the human organ-scale system. We developed a platform that simultaneously extracts spatial, molecular, morphological, and connectivity information of individual cells from the same human brain. The platform includes three core elements: a vibrating microtome for ultraprecision slicing of large-scale tissues without losing cellular connectivity (MEGAtome), a polymer hydrogel-based tissue processing technology for multiplexed multiscale imaging of human organ-scale tissues (mELAST), and a computational pipeline for reconstructing three-dimensional connectivity across multiple brain slabs (UNSLICE). We applied this platform for analyzing human Alzheimer's disease pathology at multiple scales and demonstrating scalable neural connectivity mapping in the human brain.


Subject(s)
Alzheimer Disease , Brain , Molecular Imaging , Humans , Alzheimer Disease/diagnostic imaging , Brain/diagnostic imaging , Molecular Imaging/methods , Phenotype , Hydrogels/chemistry , Connectome
4.
bioRxiv ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38915583

ABSTRACT

Postnatal genomic regulation significantly influences tissue and organ maturation but is under-studied relative to existing genomic catalogs of adult tissues or prenatal development in mouse. The ENCODE4 consortium generated the first comprehensive single-nucleus resource of postnatal regulatory events across a diverse set of mouse tissues. The collection spans seven postnatal time points, mirroring human development from childhood to adulthood, and encompasses five core tissues. We identified 30 cell types, further subdivided into 69 subtypes and cell states across adrenal gland, left cerebral cortex, hippocampus, heart, and gastrocnemius muscle. Our annotations cover both known and novel cell differentiation dynamics ranging from early hippocampal neurogenesis to a new sex-specific adrenal gland population during puberty. We used an ensemble Latent Dirichlet Allocation strategy with a curated vocabulary of 2,701 regulatory genes to identify regulatory "topics," each of which is a gene vector, linked to cell type differentiation, subtype specialization, and transitions between cell states. We find recurrent regulatory topics in tissue-resident macrophages, neural cell types, endothelial cells across multiple tissues, and cycling cells of the adrenal gland and heart. Cell-type-specific topics are enriched in transcription factors and microRNA host genes, while chromatin regulators dominate mitosis topics. Corresponding chromatin accessibility data reveal dynamic and sex-specific regulatory elements, with enriched motifs matching transcription factors in regulatory topics. Together, these analyses identify both tissue-specific and common regulatory programs in postnatal development across multiple tissues through the lens of the factors regulating transcription.

5.
Geroscience ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877341

ABSTRACT

Ageing is a complex biological process with variations among individuals, leading to the development of ageing clocks to estimate biological age. Glycans, particularly in immunoglobulin G (IgG), have emerged as potential biomarkers of ageing, with changes in glycosylation patterns correlating with chronological age.For precision analysis, three different plasma pools were analysed over 26 days in tetraplicates, 312 samples in total. In short-term variability analysis, two cohorts were analysed: AstraZeneca MFO cohort of 26 healthy individuals (median age 20) and a cohort of 70 premenopausal Chinese women (median age 22.5) cohort monitored over 3 months. Long-term variability analysis involved two adult men aged 47 and 57, monitored for 5 and 10 years, respectively. Samples were collected every 3 months and 3 weeks, respectively. IgG N-glycan analysis followed a standardized approach by isolating IgG, its subsequent denaturation and deglycosylation followed by glycan cleanup and labelling. Capillary gel electrophoresis with laser-induced fluorescence (CGE-LIF) and ultra-performance liquid chromatography analyses were employed for glycan profiling. Statistical analysis involved normalization, batch correction, and linear mixed models to assess time effects on derived glycan traits.The intermediate precision results consistently exhibited very low coefficient of variation values across all three test samples. This consistent pattern underscores the high level of precision inherent in the CGE method for analysing the glycan clock of ageing. The AstraZeneca MFO cohort did not show any statistically significant trends, whereas the menstrual cycle cohort exhibited statistically significant trends in digalactosylated (G2), agalactosylated (G0) and fucosylation (F). These trends were attributed to the effects of the menstrual cycle. Long-term stability analysis identified enduring age-related trends in both subjects, showing a positive time effect in G0 and bisected N-acetylglucosamine, as well as a negative time effect in G2 and sialylation, aligning with earlier findings. Time effects measured for monogalactosylation, and F remained substantially lower than ones observed for other traits.The study found that IgG N-glycome analysis using CGE-LIF exhibited remarkably high intermediate precision. Moreover, the study highlights the short- and long-term stability of IgG glycome composition, coupled with a notable capacity to adapt and respond to physiological changes and environmental influences such as hormonal changes, disease, and interventions. The discoveries from this study propel personalized medicine forward by deepening our understanding of how IgG glycome relates to age-related health concerns. This study underscores the reliability of glycans as a biomarker for tracking age-related changes and individual health paths.

6.
Alzheimers Dement ; 20(7): 5044-5053, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38809917

ABSTRACT

INTRODUCTION: Recent genome-wide association studies (GWAS) have reported a genetic association with Alzheimer's disease (AD) at the TNIP1/GPX3 locus, but the mechanism is unclear. METHODS: We used cerebrospinal fluid (CSF) proteomics data to test (n = 137) and replicate (n = 446) the association of glutathione peroxidase 3 (GPX3) with CSF biomarkers (including amyloid and tau) and the GWAS-implicated variants (rs34294852 and rs871269). RESULTS: CSF GPX3 levels decreased with amyloid and tau positivity (analysis of variance P = 1.5 × 10-5) and higher CSF phosphorylated tau (p-tau) levels (P = 9.28 × 10-7). The rs34294852 minor allele was associated with decreased GPX3 (P = 0.041). The replication cohort found associations of GPX3 with amyloid and tau positivity (P = 2.56 × 10-6) and CSF p-tau levels (P = 4.38 × 10-9). DISCUSSION: These results suggest variants in the TNIP1 locus may affect the oxidative stress response in AD via altered GPX3 levels. HIGHLIGHTS: Cerebrospinal fluid (CSF) glutathione peroxidase 3 (GPX3) levels decreased with amyloid and tau positivity and higher CSF phosphorylated tau. The minor allele of rs34294852 was associated with lower CSF GPX3. levels when also controlling for amyloid and tau category. GPX3 transcript levels in the prefrontal cortex were lower in Alzheimer's disease than controls. rs34294852 is an expression quantitative trait locus for GPX3 in blood, neutrophils, and microglia.


Subject(s)
Alzheimer Disease , Genome-Wide Association Study , Glutathione Peroxidase , tau Proteins , Humans , Alzheimer Disease/genetics , Alzheimer Disease/cerebrospinal fluid , Glutathione Peroxidase/genetics , Glutathione Peroxidase/cerebrospinal fluid , Female , Male , Aged , tau Proteins/cerebrospinal fluid , tau Proteins/genetics , Biomarkers/cerebrospinal fluid , DNA-Binding Proteins/genetics , Proteomics , Amyloid beta-Peptides/cerebrospinal fluid , Polymorphism, Single Nucleotide/genetics , Aged, 80 and over
7.
bioRxiv ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38798547

ABSTRACT

BACKGROUND: There is growing evidence that pathogenic mutations do not fully explain hypertrophic (HCM) or dilated (DCM) cardiomyopathy phenotypes. We hypothesized that if a patient's genetic background was influencing cardiomyopathy this should be detectable as signatures in gene expression. We built a cardiomyopathy biobank resource for interrogating personalized genotype phenotype relationships in human cell lines. METHODS: We recruited 308 diseased and control patients for our cardiomyopathy stem cell biobank. We successfully reprogrammed PBMCs (peripheral blood mononuclear cells) into induced pluripotent stem cells (iPSCs) for 300 donors. These iPSCs underwent whole genome sequencing and were differentiated into cardiomyocytes for RNA-seq. In addition to annotating pathogenic variants, mutation burden in a panel of cardiomyopathy genes was assessed for correlation with echocardiogram measurements. Line-specific co-expression networks were inferred to evaluate transcriptomic subtypes. Drug treatment targeted the sarcomere, either by activation with omecamtiv mecarbil or inhibition with mavacamten, to alter contractility. RESULTS: We generated an iPSC biobank from 300 donors, which included 101 individuals with HCM and 88 with DCM. Whole genome sequencing of 299 iPSC lines identified 78 unique pathogenic or likely pathogenic mutations in the diseased lines. Notably, only DCM lines lacking a known pathogenic or likely pathogenic mutation replicated a finding in the literature for greater nonsynonymous SNV mutation burden in 102 cardiomyopathy genes to correlate with lower left ventricular ejection fraction in DCM. We analyzed RNA-sequencing data from iPSC-derived cardiomyocytes for 102 donors. Inferred personalized co-expression networks revealed two transcriptional subtypes of HCM. The first subtype exhibited concerted activation of the co-expression network, with the degree of activation reflective of the disease severity of the donor. In contrast, the second HCM subtype and the entire DCM cohort exhibited partial activation of the respective disease network, with the strength of specific gene by gene relationships dependent on the iPSC-derived cardiomyocyte line. ADCY5 was the largest hubnode in both the HCM and DCM networks and partially corrected in response to drug treatment. CONCLUSIONS: We have a established a stem cell biobank for studying cardiomyopathy. Our analysis supports the hypothesis the genetic background influences pathologic gene expression programs and support a role for ADCY5 in cardiomyopathy.

8.
Cell ; 187(13): 3338-3356.e30, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38810644

ABSTRACT

Suspended animation states allow organisms to survive extreme environments. The African turquoise killifish has evolved diapause as a form of suspended development to survive a complete drought. However, the mechanisms underlying the evolution of extreme survival states are unknown. To understand diapause evolution, we performed integrative multi-omics (gene expression, chromatin accessibility, and lipidomics) in the embryos of multiple killifish species. We find that diapause evolved by a recent remodeling of regulatory elements at very ancient gene duplicates (paralogs) present in all vertebrates. CRISPR-Cas9-based perturbations identify the transcription factors REST/NRSF and FOXOs as critical for the diapause gene expression program, including genes involved in lipid metabolism. Indeed, diapause shows a distinct lipid profile, with an increase in triglycerides with very-long-chain fatty acids. Our work suggests a mechanism for the evolution of complex adaptations and offers strategies to promote long-term survival by activating suspended animation programs in other species.


Subject(s)
Diapause , Animals , Biological Evolution , Diapause/genetics , Embryo, Nonmammalian/metabolism , Fundulidae/genetics , Fundulidae/metabolism , Gene Expression Regulation, Developmental , Killifishes/genetics , Killifishes/metabolism , Lipid Metabolism/genetics , Fish Proteins/genetics , Male , Female
9.
bioRxiv ; 2024 May 05.
Article in English | MEDLINE | ID: mdl-38746454

ABSTRACT

More than 65 million individuals worldwide are estimated to have Long COVID (LC), a complex multisystemic condition, wherein patients of all ages report fatigue, post-exertional malaise, and other symptoms resembling myalgic encephalomyelitis / chronic fatigue syndrome (ME/CFS). With no current treatments or reliable diagnostic markers, there is an urgent need to define the molecular underpinnings of these conditions. By studying bioenergetic characteristics of peripheral blood lymphocytes in over 16 healthy controls, 15 ME/CFS, and 15 LC, we find both ME/CFS and LC donors exhibit signs of elevated oxidative stress, relative to healthy controls, especially in the memory subset. Using a combination of flow cytometry, bulk RNA-seq analysis, mass spectrometry, and systems chemistry analysis, we also observed aberrations in ROS clearance pathways including elevated glutathione levels, decreases in mitochondrial superoxide dismutase levels, and glutathione peroxidase 4 mediated lipid oxidative damage. Critically, these changes in redox pathways show striking sex-specific trends. While females diagnosed with ME/CFS exhibit higher total ROS and mitochondrial calcium levels, males with an ME/CFS diagnosis have normal ROS levels, but larger changes in lipid oxidative damage. Further analyses show that higher ROS levels correlates with hyperproliferation of T cells in females, consistent with the known role of elevated ROS levels in the initiation of proliferation. This hyperproliferation of T cells can be attenuated by metformin, suggesting this FDA-approved drug as a possible treatment, as also suggested by a recent clinical study of LC patients. Thus, we report that both ME/CFS and LC are mechanistically related and could be diagnosed with quantitative blood cell measurements. We also suggest that effective, patient tailored drugs might be discovered using standard lymphocyte stimulation assays.

10.
bioRxiv ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38798507

ABSTRACT

Polygenic risk scores (PRSs) are commonly used for predicting an individual's genetic risk of complex diseases. Yet, their implication for disease pathogenesis remains largely limited. Here, we introduce scPRS, a geometric deep learning model that constructs single-cell-resolved PRS leveraging reference single-cell chromatin accessibility profiling data to enhance biological discovery as well as disease prediction. Real-world applications across multiple complex diseases, including type 2 diabetes (T2D), hypertrophic cardiomyopathy (HCM), and Alzheimer's disease (AD), showcase the superior prediction power of scPRS compared to traditional PRS methods. Importantly, scPRS not only predicts disease risk but also uncovers disease-relevant cells, such as hormone-high alpha and beta cells for T2D, cardiomyocytes and pericytes for HCM, and astrocytes, microglia and oligodendrocyte progenitor cells for AD. Facilitated by a layered multi-omic analysis, scPRS further identifies cell-type-specific genetic underpinnings, linking disease-associated genetic variants to gene regulation within corresponding cell types. We substantiate the disease relevance of scPRS-prioritized HCM genes and demonstrate that the suppression of these genes in HCM cardiomyocytes is rescued by Mavacamten treatment. Additionally, we establish a novel microglia-specific regulatory relationship between the AD risk variant rs7922621 and its target genes ANXA11 and TSPAN14. We further illustrate the detrimental effects of suppressing these two genes on microglia phagocytosis. Our work provides a multi-tasking, interpretable framework for precise disease prediction and systematic investigation of the genetic, cellular, and molecular basis of complex diseases, laying the methodological foundation for single-cell genetics.

11.
Cell Genom ; 4(6): 100421, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38697122

ABSTRACT

Regular exercise has many physical and brain health benefits, yet the molecular mechanisms mediating exercise effects across tissues remain poorly understood. Here we analyzed 400 high-quality DNA methylation, ATAC-seq, and RNA-seq datasets from eight tissues from control and endurance exercise-trained (EET) rats. Integration of baseline datasets mapped the gene location dependence of epigenetic control features and identified differing regulatory landscapes in each tissue. The transcriptional responses to 8 weeks of EET showed little overlap across tissues and predominantly comprised tissue-type enriched genes. We identified sex differences in the transcriptomic and epigenomic changes induced by EET. However, the sex-biased gene responses were linked to shared signaling pathways. We found that many G protein-coupled receptor-encoding genes are regulated by EET, suggesting a role for these receptors in mediating the molecular adaptations to training across tissues. Our findings provide new insights into the mechanisms underlying EET-induced health benefits across organs.


Subject(s)
Physical Conditioning, Animal , Transcriptome , Animals , Physical Conditioning, Animal/physiology , Male , Rats , Female , DNA Methylation , Epigenesis, Genetic , Epigenomics , Adaptation, Physiological/genetics , Organ Specificity , Rats, Sprague-Dawley
12.
Nat Biomed Eng ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778183

ABSTRACT

The functions of non-coding regulatory elements (NCREs), which constitute a major fraction of the human genome, have not been systematically studied. Here we report a method involving libraries of paired single-guide RNAs targeting both ends of an NCRE as a screening system for the Cas9-mediated deletion of thousands of NCREs genome-wide to study their functions in distinct biological contexts. By using K562 and 293T cell lines and human embryonic stem cells, we show that NCREs can have redundant functions, and that many ultra-conserved elements have silencer activity and play essential roles in cell growth and in cellular responses to drugs (notably, the ultra-conserved element PAX6_Tarzan may be critical for heart development, as removing it from human embryonic stem cells led to defects in cardiomyocyte differentiation). The high-throughput screen, which is compatible with single-cell sequencing, may allow for the identification of druggable NCREs.

13.
Transl Psychiatry ; 14(1): 226, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816369

ABSTRACT

Psychological factors are amongst the most robust predictors of healthspan and longevity, yet are rarely incorporated into scientific and medical frameworks of aging. The prospect of characterizing and integrating the psychological influences of aging is therefore an unmet step for the advancement of geroscience. Psychogenic Aging research is an emerging branch of biogerontology that aims to address this gap by investigating the impact of psychological factors on human longevity. It is an interdisciplinary field that integrates complex psychological, neurological, and molecular relationships that can be best understood with precision medicine methodologies. This perspective argues that psychogenic aging should be considered an integral component of the Hallmarks of Aging framework, opening the doors for future biopsychosocial integration in longevity research. By providing a unique perspective on frequently overlooked aspects of organismal aging, psychogenic aging offers new insights and targets for anti-aging therapeutics on individual and societal levels that can significantly benefit the scientific and medical communities.


Subject(s)
Aging , Longevity , Humans , Aging/psychology , Aging/physiology
14.
Cell Rep ; 43(4): 114078, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38598334

ABSTRACT

The vaginal microbiome's composition varies among ethnicities. However, the evolutionary landscape of the vaginal microbiome in the multi-ethnic context remains understudied. We perform a systematic evolutionary analysis of 351 vaginal microbiome samples from 35 multi-ethnic pregnant women, in addition to two validation cohorts, totaling 462 samples from 90 women. Microbiome alpha diversity and community state dynamics show strong ethnic signatures. Lactobacillaceae have a higher ratio of non-synonymous to synonymous polymorphism and lower nucleotide diversity than non-Lactobacillaceae in all ethnicities, with a large repertoire of positively selected genes, including the mucin-binding and cell wall anchor genes. These evolutionary dynamics are driven by the long-term evolutionary process unique to the human vaginal niche. Finally, we propose an evolutionary model reflecting the environmental niches of microbes. Our study reveals the extensive ethnic signatures in vaginal microbial ecology and evolution, highlighting the importance of studying the host-microbiome ecosystem from an evolutionary perspective.


Subject(s)
Lactobacillus , Microbiota , Vagina , Humans , Vagina/microbiology , Female , Microbiota/genetics , Lactobacillus/genetics , Adhesins, Bacterial/genetics , Ethnicity/genetics , Adult , Evolution, Molecular , Pregnancy , Selection, Genetic , Biological Evolution
15.
medRxiv ; 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38633814

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a fatal and incurable neurodegenerative disease caused by the selective and progressive death of motor neurons (MNs). Understanding the genetic and molecular factors influencing ALS survival is crucial for disease management and therapeutics. In this study, we introduce a deep learning-powered genetic analysis framework to link rare noncoding genetic variants to ALS survival. Using data from human induced pluripotent stem cell (iPSC)-derived MNs, this method prioritizes functional noncoding variants using deep learning, links cis-regulatory elements (CREs) to target genes using epigenomics data, and integrates these data through gene-level burden tests to identify survival-modifying variants, CREs, and genes. We apply this approach to analyze 6,715 ALS genomes, and pinpoint four novel rare noncoding variants associated with survival, including chr7:76,009,472:C>T linked to CCDC146. CRISPR-Cas9 editing of this variant increases CCDC146 expression in iPSC-derived MNs and exacerbates ALS-specific phenotypes, including TDP-43 mislocalization. Suppressing CCDC146 with an antisense oligonucleotide (ASO), showing no toxicity, completely rescues ALS-associated survival defects in neurons derived from sporadic ALS patients and from carriers of the ALS-associated G4C2-repeat expansion within C9ORF72. ASO targeting of CCDC146 may be a broadly effective therapeutic approach for ALS. Our framework provides a generic and powerful approach for studying noncoding genetics of complex human diseases.

16.
Front Immunol ; 15: 1369295, 2024.
Article in English | MEDLINE | ID: mdl-38650940

ABSTRACT

Introduction: Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) presents substantial challenges in patient care due to its intricate multisystem nature, comorbidities, and global prevalence. The heterogeneity among patient populations, coupled with the absence of FDA-approved diagnostics and therapeutics, further complicates research into disease etiology and patient managment. Integrating longitudinal multi-omics data with clinical, health,textual, pharmaceutical, and nutraceutical data offers a promising avenue to address these complexities, aiding in the identification of underlying causes and providing insights into effective therapeutics and diagnostic strategies. Methods: This study focused on an exceptionally severe ME/CFS patient with hypermobility spectrum disorder (HSD) during a period of marginal symptom improvements. Longitudinal cytokine profiling was conducted alongside the collection of extensive multi-modal health data to explore the dynamic nature of symptoms, severity, triggers, and modifying factors. Additionally, an updated severity assessment platform and two applications, ME-CFSTrackerApp and LexiTime, were introduced to facilitate real-time symptom tracking and enhance patient-physician/researcher communication, and evaluate response to medical intervention. Results: Longitudinal cytokine profiling revealed the significance of Th2-type cytokines and highlighted synergistic activities between mast cells and eosinophils, skewing Th1 toward Th2 immune responses in ME/CFS pathogenesis, particularly in cognitive impairment and sensorial intolerance. This suggests a potentially shared underlying mechanism with major ME/CFS comorbidities such as HSD, Mast cell activation syndrome, postural orthostatic tachycardia syndrome (POTS), and small fiber neuropathy. Additionally, the data identified potential roles of BCL6 and TP53 pathways in ME/CFS etiology and emphasized the importance of investigating adverse reactions to medication and supplements and drug interactions in ME/CFS severity and progression. Discussion: Our study advocates for the integration of longitudinal multi-omics with multi-modal health data and artificial intelligence (AI) techniques to better understand ME/CFS and its major comorbidities. These findings highlight the significance of dysregulated Th2-type cytokines in patient stratification and precision medicine strategies. Additionally, our results suggest exploring the use of low-dose drugs with partial agonist activity as a potential avenue for ME/CFS treatment. This comprehensive approach emphasizes the importance of adopting a patient-centered care approach to improve ME/CFS healthcare management, disease severity assessment, and personalized medicine. Overall, these findings contribute to our understanding of ME/CFS and offer avenues for future research and clinical practice.


Subject(s)
Cytokines , Severity of Illness Index , Adult , Humans , Male , Cytokines/metabolism
17.
Article in English | MEDLINE | ID: mdl-38595188

ABSTRACT

PURPOSE: Mydriatic pupil repair by cerclage has been thought to be a permanent fix for glare, visual function and cosmesis. Iris repair can develop late cheese-wiring of cerclage sutures with resultant loss of benefits. We describe a case series of cerclage failures due to cheese-wiring. SETTING: Cincinnati Eye Institute, Cincinnati, Ohio. DESIGN: Retrospective single-surgeon case series. METHODS: A retrospective chart review sought patients that underwent iris cerclage at the Cincinnati Eye Institute who later developed suture cheese-wiring. The patient symptoms, demographics, cerclage size, suture type, knot type, iris status, and suture status at final follow up were ascertained. RESULTS: Six cases of cerclage suture cheese-wiring with loss of the original surgical benefit were identified. 10-0 polypropylene suture and a 3-1-1 knot were utilized in each case. The suture remained intact with an intact knot and suture loop in all cases. CONCLUSION: Cheese-wiring with return of mydriasis is a potential long-term outcome of iris cerclage suture placement, with return of pre-operative symptoms. Awareness of this potential eventuality provides physicians and patients a broader perspective when selecting between cerclage suture, iris prosthesis placement or other surgical and non-surgical options.

18.
Stress ; 27(1): 2321610, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38425100

ABSTRACT

Despite decades of stress research, there still exist substantial gaps in our understanding of how social, environmental, and biological factors interact and combine with developmental stressor exposures, cognitive appraisals of stressors, and psychosocial coping processes to shape individuals' stress reactivity, health, and disease risk. Relatively new biological profiling approaches, called multi-omics, are helping address these issues by enabling researchers to quantify thousands of molecules from a single blood or tissue sample, thus providing a panoramic snapshot of the molecular processes occurring in an organism from a systems perspective. In this review, we summarize two types of research designs for which multi-omics approaches are best suited, and describe how these approaches can help advance our understanding of stress processes and the development, prevention, and treatment of stress-related pathologies. We first discuss incorporating multi-omics approaches into theory-rich, intensive longitudinal study designs to characterize, in high-resolution, the transition to stress-related multisystem dysfunction and disease throughout development. Next, we discuss how multi-omics approaches should be incorporated into intervention research to better understand the transition from stress-related dysfunction back to health, which can help inform novel precision medicine approaches to managing stress and fostering biopsychosocial resilience. Throughout, we provide concrete recommendations for types of studies that will help advance stress research, and translate multi-omics data into better health and health care.


Subject(s)
Multiomics , Stress, Psychological , Humans , Longitudinal Studies , Precision Medicine
SELECTION OF CITATIONS
SEARCH DETAIL
...