Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Braz J Microbiol ; 51(4): 1897-1908, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32737868

ABSTRACT

The chitinases have extensive biotechnological potential but have been little exploited commercially due to the low number of good chitinolytic microorganisms. The purpose of this study was to identify a chitinolytic fungal and optimize its production using solid state fermentation (SSF) and agroindustry substrate, to evaluate different chitin sources for chitinase production, to evaluate different solvents for the extraction of enzymes produced during fermentation process, and to determine the nematicide effect of enzymatic extract and biological control of Meloidogyne javanica and Meloidogyne incognita nematodes. The fungus was previously isolated from bedbugs of Tibraca limbativentris Stal (Hemiptera: Pentatomidae) and selected among 51 isolated fungal as the largest producer of chitinolytic enzymes in SSF. The isolate UFSMQ40 has been identified as Trichoderma koningiopsis by the amplification of tef1 gene fragments. The greatest chitinase production (10.76 U gds-1) occurred with wheat bran substrate at 55% moisture, 15% colloidal chitin, 100% of corn steep liquor, and two discs of inoculum at 30 °C for 72 h. Considering the enzymatic inducers, the best chitinase production by the isolated fungus was achieved using chitin in colloidal, powder, and flakes. The usage of 1:15 g/mL of sodium citrate-phosphate buffer was the best ratio for chitinase extraction of SSF. The Trichoderma koningiopsis UFSMQ40 showed high mortality of M. javanica and M. incognita when applied to treatments with enzymatic filtrated and the suspension of conidia.


Subject(s)
Chitin/metabolism , Chitinases/biosynthesis , Fermentation , Hypocreales/enzymology , Animals , Bedbugs/microbiology , Biological Control Agents , Biotechnology , Dietary Fiber , Nematoda/drug effects , Spores, Fungal/metabolism , Temperature , Zea mays
2.
Environ Sci Pollut Res Int ; 25(13): 12663-12677, 2018 May.
Article in English | MEDLINE | ID: mdl-29468396

ABSTRACT

The phytoremediation of copper (Cu)-contaminated sandy soils can be influenced by the addition of vermicompost to the soil and the mycorrhization of plants. The objective of this study was to evaluate the effects of inoculation with the mycorrhizal fungus Rhizophagus clarus and the addition of different doses of bovine manure vermicompost on the phytoremediation of a sandy soil with a high Cu content using Canavalia ensiformis. Soil contaminated with 100 mg kg-1 Cu received five doses of vermicompost and was cultivated with C. ensiformis, with and without inoculation with mycorrhizal fungus, and the Cu and nutrients in the soil and soil solution were evaluated. The concentrations of Cu and other nutrients and the biomass and Cu phytotoxicity in the plants were quantified by gauging the photochemical efficiency, concentration of photosynthetic pigments and activity of oxidative stress enzymes. The vermicompost increased the soil pH and nutrient concentrations and reduced the Cu content of the solution. When the vermicompost was applied at a dose equivalent to 80 mg phosphorus (P) kg-1, the phytoextraction efficiency was higher, but the phytostabilization efficiency was higher for vermicompost doses of 10 and 20 mg P kg-1. The presence of mycorrhizal fungi increased Cu phytostabilization, especially at vermicompost doses of 10 and 20 mg P kg-1. The use of vermicompost at low doses and inoculation with mycorrhizal fungi increase the phytostabilization potential of C. ensiformis in sandy soil contaminated by Cu.


Subject(s)
Canavalia/growth & development , Copper/analysis , Glomeromycota/growth & development , Manure/analysis , Mycorrhizae/growth & development , Soil Pollutants/analysis , Animals , Biodegradation, Environmental , Biomass , Canavalia/microbiology , Cattle , Phosphorus/analysis , Soil/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL