Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 113(45): E6939-E6945, 2016 Nov 08.
Article in English | MEDLINE | ID: mdl-27791136

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that, in some cases, has been linked with mutations to the antioxidant metalloenzyme superoxide dismutase (SOD1). Although the mature form of this enzyme is highly stable and resistant to aggregation, the most immature form, lacking metal and a stabilizing intrasubunit disulfide bond, apoSOD12SH, is dynamic and hypothesized to be a major cause of toxicity in vivo. Previous solution NMR studies of wild-type apoSOD12SH have shown that the ground state interconverts with a series of sparsely populated and transiently formed conformers, some of which have aberrant nonnative structures. Here, we study seven disease mutants of apoSOD12SH and characterize their free energy landscapes as a first step in understanding the initial stages of disease progression and, more generally, to evaluate the plasticity of low-lying protein conformational states. The mutations lead to little change in the structures and dynamics of the ground states of the mutant proteins. By contrast, the numbers of low-lying excited states that are accessible to each of the disease mutants can vary significantly, with additional conformers accessed in some cases. Our study suggests that the diversity of these structures can provide alternate interaction motifs for different mutants, establishing additional pathways for new and often aberrant intra- and intermolecular contacts. Further, it emphasizes the potential importance of conformationally excited states in directing both folding and misfolding processes.

2.
Dev Biol ; 414(2): 181-92, 2016 06 15.
Article in English | MEDLINE | ID: mdl-27126199

ABSTRACT

Angioblasts of the developing vascular system require many signaling inputs to initiate their migration, proliferation and differentiation into endothelial cells. What is less studied is which intrinsic cell factors interpret these extrinsic signals. Here, we show the Lim homeodomain transcription factor islet2a (isl2a) is expressed in the lateral posterior mesoderm prior to angioblast migration. isl2a deficient angioblasts show disorganized migration to the midline to form axial vessels and fail to spread around the tailbud of the embryo. Isl2a morphants have fewer vein cells and decreased vein marker expression. We demonstrate that isl2a is required cell autonomously in angioblasts to promote their incorporation into the vein, and is permissive for vein identity. Knockout of isl2a results in decreased migration and proliferation of angioblasts during intersegmental artery growth. Since Notch signaling controls both artery-vein identity and tip-stalk cell formation, we explored the interaction of isl2a and Notch. We find that isl2a expression is negatively regulated by Notch activity, and that isl2a positively regulates flt4, a VEGF-C receptor repressed by Notch during angiogenesis. Thus Isl2a may act as an intermediate between Notch signaling and genetic programs controlling angioblast number and migration, placing it as a novel transcriptional regulator of early angiogenesis.


Subject(s)
Gene Expression Regulation, Developmental , LIM-Homeodomain Proteins/physiology , Neovascularization, Physiologic/physiology , Transcription Factors/physiology , Zebrafish Proteins/physiology , Zebrafish/embryology , Animals , Animals, Genetically Modified , Arteries/embryology , Cell Movement , Gene Knockout Techniques , LIM-Homeodomain Proteins/deficiency , LIM-Homeodomain Proteins/genetics , Mesoderm , Morpholinos/genetics , Morpholinos/toxicity , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/pathology , RNA, Messenger/genetics , Receptors, Notch/physiology , Transcription Factors/deficiency , Transcription Factors/genetics , Transcription, Genetic , Vascular Endothelial Growth Factor Receptor-3/physiology , Veins/embryology , Zebrafish/genetics , Zebrafish Proteins/deficiency , Zebrafish Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...