Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 13(17)2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37686943

ABSTRACT

Three-layer structures based on various multi-component films of III-V semiconductors heavily doped with Fe were grown using the pulsed laser sputtering of InSb, GaSb, InAs, GaAs and Fe solid targets. The structures comprising these InAsSb:Fe, InGaSb:Fe and InSb:Fe layers with Fe concentrations up to 24 at. % and separated by GaAs spacers were deposited on (001) i-GaAs substrates at 200 °C. Transmission electron microscopy showed that the structures have a rather high crystalline quality and do not contain secondary-phase inclusions. X-ray photoelectron spectroscopy investigations revealed a significant diffusion of Ga atoms from the GaAs regions into the InAsSb:Fe layers, which has led to the formation of an InGaAsSb:Fe compound with a Ga content up to 20 at. %. It has been found that the ferromagnetic properties of the InAsSb:Fe magnetic semiconductor improve with an increasing Sb:As ratio. It has been concluded that the indirect ferromagnetic exchange interaction between Fe atoms occurs predominantly via Sb atoms.

2.
Materials (Basel) ; 16(6)2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36984054

ABSTRACT

X-ray photoelectron spectroscopy was used to study the direct synthesis of strontium and molybdenum oxide thin films deposited by multitarget reactive magnetron sputtering (MT-RMS). Sr and Mo targets with a purity of 99.9% and 99.5%, respectively, were co-sputtered in an argon-oxygen gas mixture. The chamber was provided with an oxygen background flow plus an additional controlled oxygen supply to each of the targets. We demonstrate that variation in the power applied to the Mo target during MT-RMS enables the production of strontium and molybdenum oxide films with variable concentrations of Mo atoms. Both molybdenum and strontium were found in the oxidized state, and no metallic peaks were detected. The deconvoluted high-resolution XPS spectra of molybdenum revealed the presence of several Mo 3d peaks, which indicates molybdenum bonds in a lower valence state. Contrary to the Mo spectra, the high-resolution strontium Sr 3d spectra for the same samples were very similar, and no additional peaks were detected.

3.
Materials (Basel) ; 16(2)2023 Jan 04.
Article in English | MEDLINE | ID: mdl-36676218

ABSTRACT

Non-contact mapping of magnetic fields produced by the human heart muscle requires the application of arrays of miniature and highly sensitive magnetic field sensors. In this article, we describe a MEMS technology of laminated magnetoelectric heterostructures comprising a thin piezoelectric lithium niobate single crystal and a film of magnetostrictive metglas. In the former, a ferroelectric bidomain structure is created using a technique developed by the authors. A cantilever is formed by microblasting inside the lithium niobate crystal. Metglas layers are deposited by magnetron sputtering. The quality of the metglas layers was assessed by XPS depth profiling and TEM. Detailed measurements of the magnetoelectric effect in the quasistatic and dynamic modes were performed. The magnetoelectric coefficient |α32| reaches a value of 492 V/(cm·Oe) at bending resonance. The quality factor of the structure was Q = 520. The average phase amounted to 93.4° ± 2.7° for the magnetic field amplitude ranging from 12 to 100 pT. An AC magnetic field detection limit of 12 pT at a resonance frequency of 3065 Hz was achieved which exceeds by a factor of 5 the best value for magnetoelectric MEMS lead-free composites reported in the literature. The noise level of the magnetoelectric signal was 0.47 µV/Hz1/2. Ways to improve the sensitivity of the developed sensors to the magnetic field for biomedical applications are indicated.

4.
Article in English | MEDLINE | ID: mdl-31985416

ABSTRACT

With the recent thriving of low-power electronic microdevices and sensors, the development of components capable of scavenging environmental energy has become imperative. In this article, we studied bidomain congruent LiNbO3 (LN) single crystals combined with magnetic materials for dual, mechanical, and magnetic energy harvesting applications. A simple magneto-mechano-electric composite cantilever, with a trilayered long-bar bidomain LN/spring-steel/metglas structure and a large tip proof permanent magnet, was fabricated. Its vibration and magnetic energy harvesting capabilities were tested while trying to optimize its resonant characteristics, load impedance, and tip proof mass. The vibration measurements yielded a peak open-circuit voltage of 2.42 kV/g, a short-circuit current of [Formula: see text]/g, and an average power of up to 35.6 mW/g2, corresponding to a power density of 6.9 mW/(cm [Formula: see text]), at a low resonance frequency of 29.22 Hz and with an optimal load of 40 [Formula: see text]. The magnetic response revealed a resonant peak open-circuit voltage of 90.9 V/Oe and an average power of up to [Formula: see text]/Oe2, corresponding to a relatively large magnetoelectric coefficient of 1.82 kV/(cm · Oe) and a power density of [Formula: see text]/(cm [Formula: see text]). We thus developed a system that is, in principle, able to scavenge electrical power simultaneously from low-level ambient mechanical and magnetic sources to feed low-power electronic devices.

5.
Nanoscale ; 11(36): 16978-16990, 2019 Sep 28.
Article in English | MEDLINE | ID: mdl-31498350

ABSTRACT

The resistive switching in metal-oxide thin films typically occurs via modulation of the oxygen content in nano-sized conductive filaments. For Ta2O5-based resistive switching devices, the two current models consider filaments composed of oxygen vacancies and those containing metallic Ta clusters. The present work tries to resolve this dispute. The filaments in Ta2O5 were formerly shown to exhibit the same electrical transport mechanisms as TaOx thin films with x∼ 1.0. In this paper, sputtered thin films of pure ß-Ta and of TaOx with different oxygen concentrations are studied and compared in terms of their structure and electrical transport. The structural analysis reveals the presence of Ta clusters in the TaOx films. Identical electrical transport characteristics were observed in the TaOx films with x∼ 1.0 and in the ß-Ta film. Both show the same transport mechanism, a carrier concentration on the order of 1022 cm-3 and a positive magnetoresistance associated with weak antilocalization at T < 30 K. It is concluded that the electrical transport in the TaOx films with x∼ 1.0 is dominated by percolation through Ta clusters. This means that the transport in the filaments is also determined by percolation through Ta clusters, strongly supporting the metallic Ta filament model.

6.
Article in English | MEDLINE | ID: mdl-30990180

ABSTRACT

Low-frequency vibration energy harvesting is becoming increasingly important for environmentally friendly and biomedical applications in order to power various wearable and implanted devices. In this paper, we propose the use of piezoelectric congruent LiNbO3 (LN) single crystals, with an engineered bidomain structure, as an alternative to the widely employed lead-based PZT. We thus compared experimentally the pure vibration energy scavenging performance of square-shaped bidomain and single-domain Y+128°-cut LN crystals and a conventional bimorph soft PZT ceramic bonded to long spring-steel cantilevers as a function of the frequency, load resistance, and tip proof mass. At a low bending resonance frequency of ca. 32.2 Hz, the bidomain LN yielded an open-circuit voltage of 1.54 kV/g, almost one order of magnitude larger than that observed in PZT. The maximum extractable average power was found to be of 9.2 mW/g2 in the bidomain LN, 6.2 mW/g2 in the single-domain LN, and 1.8 mW/g2 in the PZT piezo-elastic cantilevers. With five times higher output power density of up to 11.0 mW/(cm [Formula: see text]) under resonance conditions, bidomain LN was thus shown to be a reliable lead-free and high-temperature alternative to PZT, thanks to its considerably larger quality factor and electromechanical conversion efficiency.

7.
Sensors (Basel) ; 19(3)2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30717160

ABSTRACT

We present a low-frequency sensor for the detection of vibrations, with a sub-nm amplitude, based on a cantilever made of a single-crystalline lithium niobate (LiNbO3) plate, with a bidomain ferroelectric structure. The sensitivity of the sensor-to-sinusoidal vibrational excitations was measured in terms of displacement as well as of acceleration amplitude. We show a linear behavior of the response, with the vibrational displacement amplitude in the entire studied frequency range up to 150 Hz. The sensitivity of the developed sensor varies from minimum values of 20 µV/nm and 7 V/g (where g = 9.81 m/s² is the gravitational acceleration), at a frequency of 23 Hz, to peak values of 92.5 mV/nm and 2443 V/g, at the mechanical resonance of the cantilever at 97.25 Hz. The smallest detectable vibration depended on the excitation frequency and varied from 100 nm, at 7 Hz, to 0.1 nm, at frequencies above 38 Hz. Sensors using bidomain lithium niobate single crystals, as sensitive elements, are promising for the detection of ultra-weak low-frequency vibrations in a wide temperature range and in harsh environments.

8.
ChemSusChem ; 11(16): 2681-2694, 2018 Aug 22.
Article in English | MEDLINE | ID: mdl-29975819

ABSTRACT

A green, template-free and easy-to-implement strategy was developed to access holey g-C3 N4 (GCN) nanosheets doped with carbon. The protocol involves heating dicyandiamide with ß-cyclodextrin (ßCD) prior to polymerization. The local symmetry of the GCN skeleton is broken, yielding CxGCN (x corresponds to the initial amount of ßCD used) with pores and a distorted structure. The electronic, emission, optical and textural properties of the best-performing material, C2GCN, were significantly modified as compared to bulk GCN. The spectroscopic and luminescent features of C2GCN show the characteristic π-π* electronic transition of GCN, accompanied by much stronger n-π* electronic transitions owing to the porous and distorted network. These new electronic transitions, along with the presence of additional carbon synergistically contributed to enhanced visible light absorption and restrained recombination of electron-hole pairs. Steady-state and time-resolved photoluminescence showed an effective quench of the fluorescence emission, accompanied by a decrease of fluorescence lifetime of C2GCN (2.20 ns) in comparison with GCN (5.85 ns), owing to the delocalization of electron and holes to new recombination centers. The photocatalytic activity of C2GCN was attributed to efficient charge carrier separation and improved visible-light absorbing ability. As result, C2GCN exhibited ∼5 times higher photocatalytic H2 generation under visible light than bulk GCN.

9.
Article in English | MEDLINE | ID: mdl-28422658

ABSTRACT

The anisotropic direct magnetoelectric (ME) properties of bilayered composites comprising magnetostrictive metglas foils and single-crystalline piezoelectric bidomain plates of 127°Y-cut LiNbO3 (LNO) have been studied theoretically and experimentally. The LNO plates possessed an engineered ferroelectric macrobidomain structure with opposite spontaneous polarization vectors. Impedance, ME effect, and equivalent magnetic noise density (EMND) measurements have been performed under quasi-static and resonant conditions. Whereas the quasi-static ME effect was only two times stronger in the bidomain samples compared to their unidomain and bonded bimorph counterparts, in the bending resonance mode, the effect was up to one order of magnitude stronger: ME coefficients of up to 578 V/( [Formula: see text]) were obtained at ca. 30 kHz under resonance using 0.5-mm-thick crystals. EMND measurements yielded values down to 153 pT/Hz 1/2 at 1 kHz and 524 fT/Hz 1/2 under resonant conditions. A further optimization of the fabrication techniques, laminate geometry, and detection circuit is expected to allow reducing these values down to at least 10 pT/Hz 1/2 and 250 fT/Hz 1/2 , respectively, and the resonance frequency by at least two orders of magnitude. Such systems may thus find use in simple and sensitive, passive and stable, low frequency and high-temperature vector magnetic field sensors.

SELECTION OF CITATIONS
SEARCH DETAIL