Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 57
1.
Article En | MEDLINE | ID: mdl-38480557

RATIONALE: Chronic amphetamine (AMPH) use leading to addiction results in adaptive changes within the central nervous system that persist well beyond the drug's elimination from the body and can precipitate relapse. Notably, alterations in glutamatergic neurotransmission play a crucial role in drug-associated behaviours. OBJECTIVES: This study aimed to identify changes induced by amphetamine in glutamate levels and the neuromodulators of glutamatergic neurotransmission (taurine and kynurenic acid) observable after 14 and 28 days of abstinence in key brain regions implicated in addiction: the cortex (Cx), nucleus accumbens (Acb), and dorsolateral striatum (CPu-L). METHODS: The rats were administered 12 doses of amphetamine (AMPH) intraperitoneally (i.p.) at 1.5 mg/kg. The behavioural response was evaluated through ultrasonic vocalizations (USV). High-performance liquid chromatography (HPLC) was used to measure the levels of glutamate, taurine, and kynurenic acid in the Cx, Acb, and CPu-L after 14 and 28 days of abstinence. RESULTS: AMPH administration led to sensitisation towards AMPH's rewarding effects, as evidenced by changes in USV. There was a noticeable decrease in kynurenic acid levels and an increase in both taurine and glutamate in the CPu-L, along with an increase in glutamate levels in the Cx, 28 days following the final AMPH injection. CONCLUSIONS: The most significant changes in the tissue levels of glutamate, taurine, and kynurenic acid were seen in the CPu-L 28 days after the last dose of AMPH. The emergence of these changes exclusively after 28 days suggests that the processes initiated by AMPH use and subsequent abstinence take time to become apparent and may be enduring. This could contribute to the incubation of craving and the risk of relapse. Developing pharmacological strategies to counteract the reduction in kynurenic acid induced by psychostimulants may provide new avenues for therapy development.

2.
Pharmacol Rep ; 76(2): 348-367, 2024 Apr.
Article En | MEDLINE | ID: mdl-38519733

BACKGROUND: The study aimed to assess the influence of a single valproate (VPA) administration on inhibitory and excitatory neurotransmitter concentrations in the brain structures involved in epileptogenesis in pentylenetetrazol (PTZ)-kindled rats. METHODS: Adult, male Wistar rats were kindled by repeated intraperitoneal (ip) injections of PTZ at a subconvulsive dose (30 mg/kg, three times a week). Due to the different times required to kindle the rats (18-22 injections of PTZ), a booster dose of PTZ was administrated 7 days after the last rats were kindled. Then rats were divided into two groups: acute administration of VPA (400 mg/kg) or saline given ip. The concentration of amino acids, kynurenic acid (KYNA), monoamines, and their metabolites in the prefrontal cortex, hippocampus, amygdala, and striatum was assessed by high-pressure liquid chromatography (HPLC). RESULTS: It was found that a single administration of VPA increased the gamma-aminobutyric acid (GABA), tryptophan (TRP), 5-hydroxyindoleacetic acid (5-HIAA), and KYNA concentrations and decreased aspartate (ASP) levels in PTZ-kindled rats in the prefrontal cortex, hippocampus, amygdala and striatum. CONCLUSIONS: Our results indicate that a single administration of VPA in the PTZ-kindled rats restored proper balance between excitatory (decreasing the level of ASP) and inhibitory neurotransmission (increased concentration GABA, KYNA) and affecting serotoninergic neurotransmission in the prefrontal cortex, hippocampus, amygdala, and striatum.


Amino Acids , Kindling, Neurologic , Rats , Male , Animals , Amino Acids/pharmacology , Pentylenetetrazole/pharmacology , Valproic Acid/pharmacology , Kynurenic Acid/metabolism , Rats, Wistar , Brain/metabolism , Kindling, Neurologic/metabolism , Amines/metabolism , gamma-Aminobutyric Acid/metabolism
3.
Pharmacol Rep ; 75(1): 119-127, 2023 Feb.
Article En | MEDLINE | ID: mdl-36385611

BACKGROUND: The present study assessed the influence of recurrent social isolation stress on the aversive memory extinction and dopamine D2 receptors (D2R) expression in the amygdala and the hippocampus subnuclei. We also analyzed the expression of epigenetic factors potentially associated with fear extinction: miRNA-128 and miRNA-142 in the amygdala. METHODS: Male adult fear-conditioned rats had three episodes of 48 h social isolation stress before each fear extinction session in weeks intervals. Ninety minutes after the last extinction session, the D2R expression in the nuclei of the amygdala and the hippocampus (immunocytochemical technique), and mRNA levels for D2R in the amygdala were assessed (PCR). Moreover, we evaluated the levels of miRNA-128 and miRNA-142 in the amygdala. RESULTS: It was found that recurrent social isolation stress decreased the fear extinction rate. The extinguished isolated rats were characterized by higher expression of D2R in the CA1 area of the hippocampus compared to the extinguished and the control rats. In turn, the isolated group presented higher D2R immunoreactivity in the CA1 area compared to the extinguished, the control, and the extinguished isolated animals. Moreover, the extinguished animals had higher expression of D2R in the central amygdala than the control and the extinguished isolated rats. These changes were accompanied by the increase in miRNA-128 level in the amygdala in the extinguished isolated rats compared to the control, the extinguished, and the isolated rats. Moreover, the extinguished rats had lower expression of miRNA-128 compared to the control and the isolated animals. CONCLUSIONS: Our results suggest that social isolation stress impairs aversive memory extinction and coexists with changes in the D2R expression in the amygdala and hippocampus and increased expression of miRNA-128 in the amygdala.


Fear , MicroRNAs , Receptors, Dopamine D2 , Animals , Male , Rats , Amygdala/metabolism , Extinction, Psychological , Hippocampus/metabolism , MicroRNAs/metabolism , Receptors, Dopamine D2/metabolism
4.
Pharmacol Rep ; 75(1): 85-98, 2023 Feb.
Article En | MEDLINE | ID: mdl-36586075

BACKGROUND: Long-term cocaine exposure leads to dysregulation of the reward system and initiates processes that ultimately weaken its rewarding effects. Here, we studied the influence of an escalating-dose cocaine regimen on drug-associated appetitive behavior after a withdrawal period, along with corresponding molecular changes in plasma and the prefrontal cortex (PFC). METHODS: We applied a 5 day escalating-dose cocaine regimen in rats. We assessed anxiety-like behavior at the beginning of the withdrawal period in the elevated plus maze (EPM) test. The reinforcement properties of cocaine were evaluated in the Conditioned Place Preference (CPP) test along with ultrasonic vocalization (USV) in the appetitive range in a drug-associated context. We assessed corticosterone, proopiomelanocortin (POMC), ß-endorphin, CART 55-102 levels in plasma (by ELISA), along with mRNA levels for D2 dopaminergic receptor (D2R), κ-receptor (KOR), orexin 1 receptor (OX1R), CART 55-102, and potential markers of cocaine abuse: miRNA-124 and miRNA-137 levels in the PFC (by PCR). RESULTS: Rats subjected to the escalating-dose cocaine binge regimen spent less time in the cocaine-paired compartment, and presented a lower number of appetitive USV episodes. These changes were accompanied by a decrease in corticosterone and CART levels, an increase in POMC and ß-endorphin levels in plasma, and an increase in the mRNA for D2R and miRNA-124 levels, but a decrease in the mRNA levels for KOR, OX1R, and CART 55-102 in the PFC. CONCLUSIONS: The presented data reflect a part of a bigger picture of a multilevel interplay between neurotransmitter systems and neuromodulators underlying processes associated with cocaine abuse.


Cocaine-Related Disorders , Cocaine , MicroRNAs , Rats , Animals , Pro-Opiomelanocortin , beta-Endorphin , Corticosterone , Reward , RNA, Messenger
5.
Neurochem Res ; 47(7): 2109-2122, 2022 Jul.
Article En | MEDLINE | ID: mdl-35522366

The efficacy of a ketogenic diet (KD) in controlling seizure has been shown in many experimental and clinical studies, however, its mechanism of action still needs further clarification. The major goal of the present study was to investigate the influence of the commercially available KD and caloric restriction (CR) on the hippocampal afterdischarge (AD) threshold in rats, and concomitant biochemical changes, specifically concerning the kynurenine pathway, in plasma and the hippocampus. As expected, the rats on the KD showed higher AD threshold accompanied by increased plasma ß-hydroxybutyrate level compared to the control group and the CR rats. This group presented also lowered tryptophan and elevated kynurenic acid levels in plasma with similar changes in the hippocampus. Moreover, the KD rats showed decreased levels of branched chain amino acids (BCAA) and aromatic amino acids (AAA) in plasma and the hippocampus. No regular biochemical changes were observed in the CR group. Our results are analogous to those detected after single administrations of fatty acids and valproic acid in our previous studies, specifically to an increase in the kynurenine pathway activity and changes in peripheral and central BCAA and AAA levels. This suggests that the anticonvulsant effect of the KD may be at least partially associated with those observed biochemical alternations.


Diet, Ketogenic , 3-Hydroxybutyric Acid/metabolism , Amino Acids, Branched-Chain/metabolism , Animals , Hippocampus/metabolism , Kynurenine/metabolism , Rats , Seizures/metabolism
6.
Behav Brain Res ; 386: 112591, 2020 05 27.
Article En | MEDLINE | ID: mdl-32194190

The aim of this study was to explore the neurobiological background of individual susceptibility and resistance to the development of posttraumatic stress disorder (PTSD)-like behaviours. Rats were divided into susceptible, PTSD(+), and resistant, PTSD(-), groups based on freezing duration during exposure to aversive context and the time spent in the central area in open field test one week after threefold stress experience (modified single prolonged stress). PTSD(-) rats showed increased concentrations of corticosterone in plasma and changes in GAD67 expression: decreased in the infralimbic cortex (IL) and increased in the lateral amygdala (LA), dentate gyrus (DG), and CA1 area of the hippocampus. Moreover, in this group, we found an increase in the number of CRF-positive nuclei in the parvocellular neurons of the paraventricular hypothalamic nucleus (pPVN). The PTSD(+) group, compared to PTSD(-) rats, had decreased concentrations of corticosterone in plasma and reduced CRF expression in the pPVN, higher CRF expression in the CA1, increased expression of CRF-positive nuclei and GR receptors in the CA3 area of the hippocampus, and increased expression of GR receptors in the DG and the central amygdala (CeA). Biochemical analysis showed higher concentrations of noradrenaline, glutamic acid in the dorsal hippocampus and amygdala and lower levels of dopamine and its metabolites in the amygdala of the PTSD(+) group than in the PTSD(-) group. The study revealed different behavioural and biochemical profiles of PTSD(+) and PTSD(-) rats and suggested that individual differences in hypothalamic-pituitary-adrenal (HPA) axis activity may determine hippocampal- and amygdala-dependent memory and fear processing.


Disease Susceptibility/metabolism , Stress Disorders, Post-Traumatic/physiopathology , Stress, Psychological/physiopathology , Amygdala/metabolism , Animals , Brain/metabolism , Corticosterone/analysis , Corticosterone/blood , Corticotropin-Releasing Hormone/metabolism , Dentate Gyrus/metabolism , Disease Models, Animal , Disease Susceptibility/psychology , Fear/physiology , Gene Expression/genetics , Gene Expression Regulation/genetics , Genetic Predisposition to Disease/genetics , Glutamate Decarboxylase/genetics , Glutamate Decarboxylase/metabolism , Hippocampus/metabolism , Hypothalamo-Hypophyseal System/metabolism , Male , Memory , Paraventricular Hypothalamic Nucleus/metabolism , Pituitary-Adrenal System/metabolism , Proto-Oncogene Proteins c-fos/genetics , Proto-Oncogene Proteins c-fos/metabolism , Rats , Rats, Wistar , Stress Disorders, Post-Traumatic/genetics , Stress Disorders, Post-Traumatic/metabolism
7.
Brain Res Bull ; 158: 108-115, 2020 05.
Article En | MEDLINE | ID: mdl-32151715

Global transcriptional disturbances are believed to play a major role in the course of epilepsy. Due to the high complexity, the neurobiological mechanisms underlying different susceptibility to seizure and epilepsy are not well known. A transcription factor called REST/NRSF (repressor element 1-silencing transcription factor/neuron-restrictive silencer factor) is believed to contribute to processes associated with seizure development. Its downstream genes, those encoding BDNF (brain-derived neurotrophic factor) and TrkB (BDNF receptor; tropomyosin receptor kinase B), are also thought to play a role. To verify this hypothesis, we used a PTZ kindling model of epilepsy and divided animals into groups according to their different susceptibility to seizure. The concentrations of REST/NRSF, BDNF, and TrkB protein and mRNA were measured in hippocampal homogenates. The level of REST/NRSF protein measured 24 h after the last PTZ injection was increased in animals resistant to kindling and was unchanged in groups of rats kindled after 5, 10 and 20 in.ections of PTZ. In contrast, TrkB protein concentration was enhanced in all kindled rats and was unchanged in the resistant rats. There were no changes in the protein concentration of BDNF in rats with different susceptibility to kindling; however, data from the combined kindled groups vs. the resistant group revealed an increased level of BDNF in resistant animals. In sum, the increased level of protein REST/NRSF in resistant animals may reflect its neuroprotective role against seizure development. The increased concentration of TrkB protein in kindled animals indicates its pivotal role in the process of epileptogenesis. We propose that in resistant rats, REST/NRSF could contribute to the prevention of TrkB activation related to seizures.


Brain-Derived Neurotrophic Factor/biosynthesis , Epilepsy/metabolism , Pentylenetetrazole/toxicity , Receptor, trkB/biosynthesis , Repressor Proteins/biosynthesis , Seizures/metabolism , Animals , Brain-Derived Neurotrophic Factor/genetics , Epilepsy/chemically induced , Epilepsy/genetics , Genetic Predisposition to Disease/genetics , Male , Rats , Rats, Wistar , Receptor, trkB/genetics , Repressor Proteins/genetics , Seizures/chemically induced , Seizures/genetics
8.
ACS Chem Neurosci ; 10(11): 4449-4461, 2019 11 20.
Article En | MEDLINE | ID: mdl-31556991

Molecular synaptic aging perturbs neurotransmission and decreases the potential for neuroplasticity. The direction and degree of changes observed in aging are often region or cell specific, hampering the generalization of age-related effects. Using real-time PCR and Western blot analyses, we investigated age-related changes in several presynaptic markers (Vglut1, Vglut2, Gad65, Gad67, Vgat, synaptophysin) involved in the initial steps of glutamatergic and GABAergic neurotransmission, in several cortical regions, in young (3-4 months old), middle-aged (1 year old), and old (2 years old) mice. We found age-related changes mainly in protein levels while, apart from the occipital cortex, virtually no significant changes in mRNA levels were detected, which suggests that aging acts on the investigated markers mainly through post-transcriptional mechanisms depending on the brain region. Principal component analysis (PCA) of protein data revealed that each brain region possessed a type of "biochemical distinctiveness" (each analyzed brain region was best characterized by higher variability level of a particular synaptic marker) that was lost with age. Analysis of glutamate and γ-aminobutyric acid (GABA) levels in aging suggested that mechanisms keeping an overall balance between the two amino acids in the brain are weakened in the hippocampus. Our results unravel the differences in mRNA/protein interactions in the aging brain.


Aging/metabolism , Brain/metabolism , Glutamic Acid/metabolism , Presynaptic Terminals/metabolism , Synaptic Transmission/physiology , gamma-Aminobutyric Acid/metabolism , Animals , Biomarkers/analysis , Biomarkers/metabolism , Blotting, Western/methods , Brain Chemistry , Female , Glutamic Acid/analysis , Mice , Mice, Inbred C57BL , Presynaptic Terminals/chemistry , Principal Component Analysis/methods , Real-Time Polymerase Chain Reaction/methods , gamma-Aminobutyric Acid/analysis
9.
Article En | MEDLINE | ID: mdl-31022425

The aim of this study was to assess the influence of chronic restraint stress on amphetamine (AMPH)-related appetitive 50-kHz ultrasonic vocalisations (USVs) in rats differing in freezing duration in a contextual fear test (CFT), i.e. HR (high-anxiety responsive) and LR (low-anxiety responsive) rats. The LR and the HR rats, previously exposed to an AMPH binge experience, differed in sensitivity to AMPH's rewarding effects, measured as appetitive vocalisations. Moreover, chronic restraint stress attenuated AMPH-related appetitive vocalisations in the LR rats but had no influence on the HR rats' behaviour. To specify, the restraint LR rats vocalised appetitively less in the AMPH-associated context and after an AMPH challenge than the control LR rats. This phenomenon was associated with a decrease in the mRNA level for D2 dopamine receptor in the amygdala and its protein expression in the basal amygdala (BA) and opposite changes in the nucleus accumbens (NAc) - an increase in the mRNA level for D2 dopamine receptor and its protein expression in the NAc shell, compared to control conditions. Moreover, we observed that chronic restraint stress influenced epigenetic regulation in the LR and the HR rats differently. The contrasting changes were observed in the dentate gyrus (DG) of the hippocampus - the LR rats presented a decrease, but the HR rats showed an increase in H3K9 trimethylation. The restraint LR rats also showed higher miR-494 and miR-34c levels in the NAc than the control LR group. Our study provides behavioural and biochemical data concerning the role of differences in fear-conditioned response in stress vulnerability and AMPH-associated appetitive behaviour. The LR rats were less sensitive to the rewarding effects of AMPH when previously exposed to chronic stress that was accompanied by changes in D2 dopamine receptor expression and epigenetic regulation in mesolimbic areas.


Amphetamine/pharmacology , Epigenesis, Genetic , Receptors, Dopamine D2/metabolism , Stress, Psychological/metabolism , Animals , Anxiety/metabolism , Anxiety/physiopathology , Dentate Gyrus/metabolism , Disease Models, Animal , Epigenesis, Genetic/drug effects , Epigenesis, Genetic/physiology , Fear/drug effects , Hippocampus/metabolism , Male , Rats , Rats, Wistar , Real-Time Polymerase Chain Reaction , Stress, Psychological/physiopathology
10.
J Neuroimmunol ; 332: 57-63, 2019 07 15.
Article En | MEDLINE | ID: mdl-30952062

In our study, we assessed the potency of the brain-derived proteins ubiquitin carboxy-terminal hydrolase L1 (UCH-L1), matrix metalloproteinase 9 (MMP-9), glial fibrillary acidic protein (GFAP) and the immune activation indicators interleukin 1ß (IL-1ß) and interleukin 6 (IL-6) as peripheral biomarkers of different susceptibilities to kindling in a preclinical model. We observed increased plasma UCH-L1 levels in kindled vs. control animals. Furthermore, MMP-9 and IL-1ß concentrations were the lowest in rats resistant to kindling. In summary, UCH-L1 is an indicator of neuronal loss and BBB disruption after seizure. MMP-9 and IL-1ß may indicate resistance to kindling. UCH-L1, MMP-9 and IL-1ß may have utility as peripheral biomarkers with translational potency in the clinic.


Brain Chemistry , Glial Fibrillary Acidic Protein/blood , Matrix Metalloproteinase 9/blood , Seizures/blood , Ubiquitin Thiolesterase/blood , Animals , Biomarkers , Convulsants/toxicity , Disease Susceptibility , Interleukin-1beta/blood , Interleukin-6/blood , Kindling, Neurologic/drug effects , Kindling, Neurologic/metabolism , Male , Models, Animal , Pentylenetetrazole/toxicity , Rats , Rats, Wistar , Seizures/chemically induced
11.
Stress ; 22(1): 113-122, 2019 01.
Article En | MEDLINE | ID: mdl-30345859

This study aimed to test the hypothesis that high-anxiety (HR) rats are more sensitive to the effects of chronic corticosterone administration and antalarmin (corticotropin-releasing factor (CRF) receptor 1, CRF1 antagonist) injections than low-anxiety (LR) rats, and this effect is accompanied by changes in CRF system activity in brain regions involved in the control of emotions and the hypothalamic-pituitary-adrenal (HPA) axis. Male rats were divided into LR (n = 25) and HR (n = 30) groups according to the duration of conditioned freezing in a contextual fear test. Chronic corticosterone administration (by injection, 20 mg/kg) for 21 d (except weekends) increased freezing duration and number of GR (glucocorticoid receptor)-immunoreactive nuclei in the basal amygdala (BA) and decreased GR-immunoreactive nuclei in the infralimbic cortex (IL), dentate gyrus (DG), and CA3 area, only in the HR group. Moreover, in this group, corticosterone administration decreased number of CRF-immunoreactive neurons of the parvocellular paraventricular hypothalamic nucleus (pPVN), DG, and CA1. Antalarmin (10 mg/kg, i.p., 2 injections) significantly attenuated conditioned fear responses, increased plasma corticosterone concentration, and decreased GR-immunoreactive nuclei in the BA, only in the HR group. Moreover, in this group, antalarmin increased number of GR-immunoreactive nuclei in the IL, DG, and CA3 and increased number of CRF-immunoreactive cells in the pPVN, DG, and CA1. Hence, antalarmin attenuated the fear response and restored HPA axis function in HR rats, which were more sensitive to corticosterone exposure. These data suggest that individual differences in central local CRF system activity may determine the neurobiological mechanisms related to mood and emotional disorders.


Brain/metabolism , Conditioning, Classical/drug effects , Corticosterone/pharmacology , Fear/drug effects , Receptors, Corticotropin-Releasing Hormone/antagonists & inhibitors , Animals , Anxiety/metabolism , Anxiety/psychology , Conditioning, Classical/physiology , Corticosterone/blood , Corticotropin-Releasing Hormone/metabolism , Emotions , Fear/physiology , Hypothalamo-Hypophyseal System/drug effects , Hypothalamo-Hypophyseal System/metabolism , Individuality , Male , Pituitary-Adrenal System/metabolism , Pyrimidines/pharmacology , Pyrroles/pharmacology , Rats , Rats, Wistar , Stress, Psychological/metabolism
12.
Behav Brain Res ; 359: 181-189, 2019 02 01.
Article En | MEDLINE | ID: mdl-30366032

The aim of the study was to assess appetitive responses and central dopaminergic neurotransmission in passive and active rats divided according to their immobility time in the Porsolt swim test and exposed to restraint stress. Passive rats had more episodes of appetitive 50-kHz ultrasonic vocalization (USV) during rat encounter after social isolation and spent significantly more time in the amphetamine-associated context in conditioned place preference test, compared to active rats. Restraint stress decreased sucrose preference, but increased appetitive vocalization and reinforced the conditioned place preference only in passive animals that was associated with increased dopamine concentration in the amygdala. Restraint stress increased also the level of Cocaine- and Amphetamine Regulated Transcript (CART) peptide, a neuromodulator linked to dopamine neurotransmission, in the central nucleus of amygdala, while decreasing it the nucleus accumbens shell in passive rats. In the parvocellular region of paraventricular nucleus of the hypothalamus passive animals had a higher expression of CART compared to passive restraint rats and active control rats. The obtained results show that active and passive rats in the Porsolt test differ significantly in response to appetitive stimuli, which can be additionally changed under stress conditions. The underlying mechanisms are probably associated with differences in dopaminergic activity and CART signaling in reward system.


Amygdala/metabolism , Appetitive Behavior/physiology , Dopamine/metabolism , Reward , Stress, Psychological/metabolism , Animals , Individuality , Male , Nerve Tissue Proteins/metabolism , Nucleus Accumbens/metabolism , Paraventricular Hypothalamic Nucleus/metabolism , Psychological Tests , Random Allocation , Rats, Wistar , Restraint, Physical/physiology , Restraint, Physical/psychology , Swimming/physiology , Swimming/psychology , Synaptic Transmission/physiology , Ultrasonics , Vocalization, Animal/physiology
13.
Pharmacol Rep ; 70(5): 988-992, 2018 Oct.
Article En | MEDLINE | ID: mdl-30107349

BACKGROUND: Parkinson's disease (PD) is a progressive neurodegenerative process leading to the loss of dopaminergic neurons and their projections. 1-methyl-4-phenol-1,2,5,6-tetrahydropyridine (MPTP) toxicity is a well-recognized animal model of PD. It is suggested that the impairment of mitochondrial function in the substantia nigra plays an important role in both the onset and the progression of PD. Octanoic acid (C8), a fatty acid that is the main constituent of the medium-chain triglyceride ketogenic diet, increases the metabolic activity of mitochondria; hence, it seemed interesting to investigate whether C8 exhibits neuroprotective effects in the MPTP model of PD and whether it affects mitochondria function in the striatum. METHODS: Therefore, we examined the possible protective effects of C8 in the mouse model of PD induced by MPTP. For this purpose, changes in the concentration of DA and its metabolites were determined. In addition, we investigated whether expression levels of PGC-1α and the PEPCK enzyme, markers of mitochondrial activity, are altered by C8. RESULTS: In this study, we observed for the first time that acute and, in particular, repeated administrations of C8 significantly reduced the impairment of dopaminergic neurotransmission in the striatum evoked by MPTP administration and resulted in a marked increase in PGC-1α expression and in both forms of PEPCK. CONCLUSIONS: These results indicate that the C8 leads to an inhibition of the neurodegenerative processes seen after MPTP administration. Our results suggest that a probable mechanism of the neuroprotective action of C8 is related to an increase in metabolic activity in striatal mitochondria.


1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , Caprylates/pharmacology , Corpus Striatum/metabolism , Dopamine/metabolism , Parkinson Disease/prevention & control , 3,4-Dihydroxyphenylacetic Acid/metabolism , Animals , Homovanillic Acid/metabolism , Male , Mice , Neuroprotective Agents/pharmacology , Parkinson Disease/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/biosynthesis , Phosphoenolpyruvate Carboxykinase (GTP)/biosynthesis
14.
Behav Brain Res ; 330: 97-107, 2017 07 14.
Article En | MEDLINE | ID: mdl-28479265

This study used the conditioned place preference test to explore the effects of subchronic amphetamine administration on drug-associated cues in rats with different emotional reactivity. We also examined the changes in markers of dopaminergic activity in brain regions in response to the amphetamine-paired context, after a withdrawal period preceded by subchronic amphetamine treatment. We used low-anxiety (LR) and high-anxiety (HR) rats, which are known to exhibit distinct levels of susceptibility to amphetamine. Compared to HR rats, LR rats spent significantly more time in the amphetamine-paired compartment after the withdrawal period preceded by subchronic amphetamine treatment. Compared to HR control rats, LR control rats showed higher expression of the D1 receptor in the nucleus accumbens core (NAC core) and basolateral amygdala and higher expression of the D2 receptor in the NAC core. After the amphetamine treatment and withdrawal period, the LR rats showed higher D1 receptor expression in the NAC core, an increased level of homovanilic acid (HVA) in the prefrontal cortex, the NAC and the central amygdala than HR rats, as well as lower D2 receptor expression in the NAC core and the amygdala than LR control rats. These results indicate that the differences in the activity of the dopaminergic mesolimbic system in the HR and LR rats are maintained and even enhanced after a multi-day break in the use of the drug, indicating the occurrence of sensitisation. These findings show that the innate reactivity of the limbic dopaminergic innervations, dependent on the level of emotional reactivity, may significantly and chronically modify the development and maintenance of sensitisation to amphetamine.


Amphetamine/pharmacology , Anxiety/physiopathology , Motivation/drug effects , Amphetamines , Amygdala/metabolism , Animals , Anxiety/metabolism , Anxiety/psychology , Anxiety Disorders/metabolism , Behavior, Animal/physiology , Conditioning, Classical/physiology , Cues , Dopamine/metabolism , Fear/physiology , Male , Nucleus Accumbens/drug effects , Prefrontal Cortex/drug effects , Rats , Rats, Wistar , Receptors, Dopamine D1/metabolism , Receptors, Dopamine D2/metabolism
15.
J Psychopharmacol ; 31(1): 115-126, 2017 01.
Article En | MEDLINE | ID: mdl-27703043

This study utilised the two injection protocol of sensitisation (TIPS) and the conditioned place preference test to validate and extend previous findings on the effects of amphetamine on positive reinforcement-related 50 kHz ultrasonic vocalisation (USV) in rats. We also examined changes in the expression of c-Fos and the NMDA receptor 2B (GluN2B) subunit, markers of neuronal activity and plasticity, in brain regions of rats in response to TIPS. We used low anxiety-responsive (LR) and high anxiety-responsive (HR) rats, which are known to exhibit different fear-conditioned response strengths, different susceptibilities to amphetamine in the TIPS procedure and different amphetamine-dependent 50 kHz USV responses. The LR rats, compared to the HR rats, not only vocalised much more intensely but also spent significantly more time in the amphetamine-paired compartment. After the second dose of amphetamine, the LR rats exhibited more c-Fos and GluN2B activation in layers II and III of the M1/M2 motor cortex area and prefrontal cortex (PRE, PRL, IL) and also presented with more GluN2B activation in the basal amygdala. These data reveal that HR and LR rats exhibit different levels of reactivity in the cortical-limbic pathway, which controls reward-related motivational processes. These findings contribute to the general hypothesis that heterogeneity in emotional processes is one of the causes of sensitisation to amphetamine and drug addiction.


Amphetamine/pharmacology , Anxiety Disorders/drug therapy , Anxiety/drug therapy , Animals , Anxiety/metabolism , Anxiety Disorders/metabolism , Behavior, Animal/drug effects , Conditioning, Classical/drug effects , Conditioning, Psychological/drug effects , Fear/drug effects , Male , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Rats , Rats, Wistar , Receptors, N-Methyl-D-Aspartate/metabolism , Reinforcement, Psychology , Reward
16.
Behav Brain Res ; 319: 124-134, 2017 02 15.
Article En | MEDLINE | ID: mdl-27865917

The aim of this study was to assess the mechanisms underlying behavioural differences between high- (HR) and low- (LR) anxiety rats, selected according to their behaviour in the contextual fear test (i.e., the duration of the freezing response was used as a discriminating variable), after a chronic restraint procedure (21days, 3h daily). We analysed the expression of the GluN2B subunits of the NMDA and glucocorticoid receptors (GRs) in selected brain structures (immunofluorescence). Following chronic restraint stress in the HR rats, we observed a decrease in the expression of the GRs and GluN2B subunits of the NMDA receptor in the prefrontal cortical areas and the hippocampus compared to the HR-control and the LR-restraint groups. These effects coincided with an increase in passive depressive-like behaviour in the Porsolt test of the HR rats. Moreover, in the hippocampus, the HR-restraint animals demonstrated decreased glutamate levels and a decreased glutamate/glutamine ratio compared to the LR-restraint rats. Furthermore, the HR-restraint group had increased GRs/GluN2B subunits colocalisation in the basolateral amygdala (BLA) compared to the HR-control and the LR-restraint rats. The present results suggest that in HR rats exposed to chronic restraint stress, the hippocampal and cortical glutamatergic system components are changed. These effects could have a negative influence on the feedback mechanisms regulating the hypothalamic-pituitary-adrenal axis as well as on the behavioural processes expressed as depressive-like symptoms.


Anxiety/metabolism , Anxiety/pathology , Brain/metabolism , Gene Expression Regulation/physiology , Receptors, Glucocorticoid/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Amino Acids/metabolism , Analysis of Variance , Animals , Anxiety/etiology , Body Weight , Conditioning, Psychological , Disease Models, Animal , Exploratory Behavior , Fear , Male , Maze Learning/physiology , Rats , Rats, Wistar , Receptors, Glucocorticoid/genetics , Receptors, N-Methyl-D-Aspartate/genetics , Restraint, Physical/adverse effects , Swimming/psychology , Time Factors
17.
J Neuroimmunol ; 298: 146-52, 2016 09 15.
Article En | MEDLINE | ID: mdl-27609288

In our study, we used rapid electrical hippocampal kindling and in vivo microdialysis methods to assess the involvement of inflammatory mediators: lipopolysaccharide (LPS) and proinflammatory interleukin-1ß (IL-1ß) in mechanisms of epileptogenesis. We observed, that both, LPS and IL-1ß, administered into stimulated hippocampus, accelerated kindling process. LPS also increased the expression of IL-1ß in stimulated hippocampus in kindled rats. In vivo acute LPS perfusion, via a microdialysis cannula implanted into the naïve rat's hippocampus, produced an increase in extracellular glutamate release. We suppose, that particularly IL-1ß action and increased glutamate concentration may significantly contribute to LPS effects on kindling development.


Glutamic Acid/metabolism , Hippocampus/drug effects , Interleukin-1beta/metabolism , Kindling, Neurologic/drug effects , Lipopolysaccharides/toxicity , Seizures/chemically induced , Analysis of Variance , Animals , Cytokines/metabolism , Disease Models, Animal , Electric Stimulation , Electroencephalography , Enzyme-Linked Immunosorbent Assay , Hippocampus/metabolism , Interleukin-1beta/pharmacology , Male , Microdialysis , Rats , Rats, Wistar , Time Factors , gamma-Aminobutyric Acid/metabolism
18.
Behav Brain Res ; 312: 174-85, 2016 10 01.
Article En | MEDLINE | ID: mdl-27288591

A number of studies have identified the importance of dopaminergic, opioid, serotonergic, noradrenergic and glutamatergic neurotransmission in amphetamine-induced "50-kHz" ultrasonic vocalizations (USVs). Amphetamine became a topic of interest for many researchers interested in USVs due to its ability to induce 50-kHz USVs. To date, it has been difficult to identify the neurotransmitters responsible for this phenomenon. The aim of this study was to determine the following: (i) concentrations of neurotransmitters in selected structures of the rat brain after re-exposure of the rats to amphetamine administration; (ii) changes in Arc in the medial prefrontal cortex, striatum, nucleus accumbens core and shell, hippocampus, amygdala and ventral tegmental area; and (iii) a biological basis for differences in 50-kHz USV emissions in response to amphetamine administration. Re-exposure to amphetamine increased 50-kHz USVs. This parameter do not correlate with distance covered by the investigated animals. An increased concentration of noradrenaline in the nucleus accumbens (NAcc) strongly correlated with the number of 50-kHz USVs. We found that NAcc noradrenaline concentrations negatively correlated with the concentration of dopamine and dopamine metabolites and positively correlated with the concentration of GABA and 5-HIAA (serotonin metabolite) in this structure. We have also identified a positive correlation between striatal 3-MT (dopamine metabolite) concentrations and Arc expression in the hippocampal DG as well as a negative correlation between the concentration of GABA in the amygdala and Arc expression in the central amygdala. Thus, the relationship between the emission of 50-kHz USVs and the neurochemical changes that occur after re-exposure to amphetamine indicates cross-talk between NA, DA, 5-HT and GABA neurotransmission in the NAcc.


Amino Acids/metabolism , Amphetamine/administration & dosage , Biogenic Monoamines/metabolism , Brain/metabolism , Cytoskeletal Proteins/physiology , Nerve Tissue Proteins/physiology , Vocalization, Animal/drug effects , Vocalization, Animal/physiology , 3,4-Dihydroxyphenylacetic Acid/metabolism , Alanine , Amygdala/metabolism , Animals , Brain/drug effects , Corpus Striatum/metabolism , Dopamine/analogs & derivatives , Dopamine/metabolism , Glutamic Acid/metabolism , Hippocampus/metabolism , Homovanillic Acid/metabolism , Hydroxyindoleacetic Acid/metabolism , Male , Motor Activity/drug effects , Norepinephrine , Nucleus Accumbens/metabolism , Rats , Rats, Sprague-Dawley , Taurine/metabolism , Ultrasonic Waves , Ventral Tegmental Area/metabolism , gamma-Aminobutyric Acid/metabolism
19.
Neuropharmacology ; 99: 566-76, 2015 Dec.
Article En | MEDLINE | ID: mdl-26318100

The aim of this study was to examine the role of GABAergic neurotransmission in amygdala nuclei in low- (LR) and high-anxiety (HR) rats after repeated corticosterone administration and acute injection of the benzodiazepine midazolam. The animals were divided into LR and HR groups based on the duration of their conditioned freezing in a contextual fear test (CFT). Repeated daily administration of corticosterone (20 mg/kg s.c.) for 21 injections increased anxiety-like behavior in the open field and reduced body weight in both the LR and HR groups. These effects of corticosterone administration were more pronounced in the HR group. Moreover, in the HR group, chronic corticosterone administration increased the duration of freezing in the CFT test compared with the appropriate control group and treated LR rats. The behavioral effects in HR rats were accompanied by an increase in the expression of c-Fos in the lateral (LA) and central (CeA) nuclei of the amygdala and by a decrease in GABA-A alpha-2 subunit density in the CeA. Acute midazolam administration significantly attenuated the neophobia and conditioned fear responses, decreased c-Fos expression in the LA and CeA, and increased alpha-2 subunit density in the CeA only in the HR group. These studies have shown that HR rats are more susceptible to the anxiogenic effects of chronic corticosterone administration, which are associated with the attenuation of GABAergic control over the amygdala output that controls emotional responses. The current data may increase understanding of the neurobiological mechanisms responsible for individual differences in the psychopathological processes induced by repeated administration of high doses of glucocorticoids or by elevated levels of these hormones, which are associated with chronic stress and affective pathology.


Anxiety Disorders/metabolism , Central Amygdaloid Nucleus/metabolism , Receptors, GABA-A/metabolism , gamma-Aminobutyric Acid/metabolism , Animals , Anti-Anxiety Agents/pharmacology , Anxiety Disorders/drug therapy , Anxiety Disorders/pathology , Basolateral Nuclear Complex/drug effects , Basolateral Nuclear Complex/metabolism , Basolateral Nuclear Complex/pathology , Central Amygdaloid Nucleus/drug effects , Central Amygdaloid Nucleus/pathology , Corticosterone , Disease Models, Animal , Fear/drug effects , Fear/physiology , Freezing Reaction, Cataleptic/drug effects , Freezing Reaction, Cataleptic/physiology , GABA Modulators/pharmacology , Individuality , Male , Midazolam/pharmacology , Proto-Oncogene Proteins c-fos/metabolism , Rats, Wistar
20.
Psychopharmacology (Berl) ; 232(11): 1941-55, 2015 Jun.
Article En | MEDLINE | ID: mdl-25466704

RATIONALE: Acute administration of high doses of morphine reduced 50-kHz ultrasonic vocalizations (USVs). Although morphine meets the classical criteria for inducing 50-kHz USVs (it causes place preference and induces dopamine release in nucleus accumbens), it also inhibits appetitive vocalizations. OBJECTIVE: The aims of this study were to (i) study the pharmacological impact of κ-opioid (KOR) and µ-opioid receptor (MOR) ligands on the emission of 50-kHz USVs triggered by social interaction after long-term isolation and (ii) analyze the concentrations of the main neurotransmitters in reward-related structures (ventral tegmental area (VTA), nucleus accumbens (NAcc), and medial prefrontal cortex (mPFC)). METHODS: In an attempt to define the effects of opioid-receptor activation on the reward system, we used a social interaction test (after 21 days isolation). HPLC analysis was used to determine the monoamine and amino acid concentrations in reward-related structures. RESULTS: U-50488 (10.0 mg/kg), morphine (5.0 and 1.0 mg/kg), and naltrexone (5.0 mg/kg) decreased, and nor-BNI (10.0 mg/kg) increased 50-kHz USVs. Acute pretreatment with nor-BNI or naltrexone reduced the 50-kHz suppression induced via morphine. The biochemical data showed several variations between groups regarding dopamine concentrations, serotonin, and their metabolites; these data may suggest that the levels of emitted ultrasound in the 50-kHz band are inversely proportional to the 5-hydroxyindoleacetic acid (5-HIAA)/3-methoxytyramine (3-MT) ratio in the VTA. CONCLUSIONS: These results indicate an important role for KOR in the regulation of 50-kHz USV emissions and suggest that KOR activation may be a key mediator in the regulation of reward responses. Changes in the balance between serotonin and dopamine concentrations in the VTA may be a key predictor for 50-kHz USV emission.


Appetitive Behavior/drug effects , Appetitive Behavior/physiology , Morphine/pharmacology , Receptors, Opioid, kappa/drug effects , Receptors, Opioid, kappa/physiology , Vocalization, Animal/drug effects , Vocalization, Animal/physiology , Animals , Male , Neural Pathways/drug effects , Neural Pathways/physiopathology , Nucleus Accumbens/metabolism , Prefrontal Cortex/drug effects , Prefrontal Cortex/physiopathology , Rats , Rats, Sprague-Dawley , Reward , Ultrasonics , Ventral Tegmental Area/metabolism
...