Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Commun ; 4(4): fcac202, 2022.
Article in English | MEDLINE | ID: mdl-36003325

ABSTRACT

Pelizaeus-Merzbacher disease is an X-linked recessive leucodystrophy of the central nervous system caused by mutations affecting the major myelin protein, proteolipid protein 1. The extent of the altered in vivo neurochemistry of protein, proteolipid protein 1 duplications, the most common form of Pelizaeus-Merzbacher disease, is, however, poorly understood. Phosphorus magnetic resonance spectroscopy is the only in vivo technique that can assess the biochemistry associated with high-energy phosphate and membrane phospholipid metabolism across different cortical, subcortical and white matter areas. In this cross-sectional study, whole-brain, multi-voxel phosphorus magnetic resonance spectroscopy was acquired at 3 T on 14 patients with Pelizaeus-Merzbacher disease with protein, proteolipid protein 1 duplications and 23 healthy controls (all males). Anabolic and catabolic levels of membrane phospholipids (phosphocholine and phosphoethanolamine, and glycerophosphoethanolamine and glycerophosphocholine, respectively), as well as phosphocreatine, inorganic orthophosphate and adenosine triphosphate levels relative to the total phosphorus magnetic resonance spectroscopy signal from 12 different cortical and subcortical areas were compared between the two groups. Independent of brain area, phosphocholine, glycerophosphoethanolamine and inorganic orthophosphate levels were significantly lower (P = 0.0025, P < 0.0001 and P = 0.0002) and phosphocreatine levels were significantly higher (P < 0.0001) in Pelizaeus-Merzbacher disease patients compared with controls. Additionally, there was a significant group-by-brain area interaction for phosphocreatine with post-hoc analyses demonstrating significantly higher phosphocreatine levels in patients with Pelizaeus-Merzbacher disease compared with controls across multiple brain areas (anterior and posterior white matter, superior parietal lobe, posterior cingulate cortex, hippocampus, occipital cortex, striatum and thalamus; all P ≤ 0.0042). Phosphoethanolamine, glycerophosphoethanolamine and adenosine triphosphate levels were not significantly different between groups. For the first-time, widespread alterations in phosphorus magnetic resonance spectroscopy metabolite levels of Pelizaeus-Merzbacher disease patients are being reported. Specifically, increased high-energy phosphate storage levels of phosphocreatine concomitant with decreased inorganic orthophosphate across multiple areas suggest a widespread reduction in the high-energy phosphate utilization in Pelizaeus-Merzbacher disease, and the membrane phospholipid metabolite deficits suggest a widespread degradation in the neuropil content/maintenance of patients with Pelizaeus-Merzbacher disease which includes axons, dendrites and astrocytes within cortex and the myelin microstructure and oligodendrocytes within white matter. These results provide greater insight into the neuropathology of Pelizaeus-Merzbacher disease both in terms of energy expenditure and membrane phospholipid metabolites. Future longitudinal studies are warranted to investigate the utility of phosphorus magnetic resonance spectroscopy as surrogate biomarkers in monitoring treatment intervention for Pelizaeus-Merzbacher disease.

2.
Neurosci Lett ; 678: 90-98, 2018 06 21.
Article in English | MEDLINE | ID: mdl-29729355

ABSTRACT

Proteolipid protein (PLP), besides its adhesive role in myelin, has been postulated to have multiple cellular functions. One well-documented function of PLP is regulation of oligodendrocyte (Olg) apoptosis. In contrast, DM20, an alternatively spliced product of the PLP1/Plp1 gene, has been proposed to have functions that are unique from PLP but these functions have never been elucidated. Here, we compare metabolism of PLP and DM20, and show that oxidative phosphorylation (OxPhos) was significantly decreased in Plp1 but not DM20 or EGFP expressing cells. The reserve OxPhos capacity of Plp1 expressing cells was half of control cells, suggesting that they are very vulnerable to stress. ATP in media of Plp1 expressing cells is significantly increased more than two-fold compared to controls; markers of apoptosis are increased in cells over-expressing Plp1, indicating that abnormal metabolism of PLP is most likely the direct cause leading to Olg apoptosis. We hypothesize that abnormal metabolism, mediated by increased insertion of PLP into mitochondria, underlies demyelination in Pelizaeus-Merzbacher Disease (PMD) and in models of PMD. To understand why PLP and DM20 function differently, we mutated or deleted amino acids located in the PLP-specific region. All these mutations and deletions of the PLP-specific region prevented insertion of PLP into mitochondria. These findings demonstrate that the PLP-specific region is essential for PLP's import into mitochondria, and now offer an explanation for deciphering unique functions of PLP and DM20.


Subject(s)
Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Myelin Proteolipid Protein/metabolism , Adenosine Triphosphate/metabolism , Animals , Apoptosis , COS Cells , Cell Respiration , Chlorocebus aethiops , Lactic Acid/metabolism , Pelizaeus-Merzbacher Disease/metabolism
3.
Neurosci Res ; 74(2): 144-55, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22902553

ABSTRACT

Proteolipid protein (PLP) and its alternatively spliced isoform DM20 comprise ∼50% of central nervous system (CNS) myelin protein. The two proteins are identical in sequence except for the presence of a 35 amino sequence within the intracellular loop of PLP that is absent in DM20. In this work, we compared the expression of PLP/DM20 in transfected cells, oligodendrocytes and brain. In all 3 tissues, PLP exists as both a monomer and a disulfide-linked dimer; in contrast, DM20 is found mainly as a monomer. PLP dimers were increased by both chemical crosslinking and incubation with hydrogen peroxide, and were mediated by a cysteine at amino acid 108, located within the proximal intracellular loop of both PLP and DM20. The PLP-specific sequence thus influences the accessibility of this cysteine to chemical modification, perhaps as a result of altering protein structure. Consistent with these findings, several mutant PLPs known to cause Pelizaeus-Merzbacher disease form predominantly disulfide-linked, high molecular weight aggregates in transfected COS7 cells that are arrested in the ER and are associated with increased expression of CHOP, a part of the cellular response to unfolded proteins. In contrast, the same mutations in DM20 accumulate fewer high molecular weight disulfide-linked species that are expressed at the cell surface, and are not associated with increased CHOP. Taken together, these data suggest that mutant PLP multimerization, mediated in part by way of cysteine 108, may be part of the pathogenesis of Pelizaeus-Merzbacher disease.


Subject(s)
Cysteine/chemistry , Myelin Proteolipid Protein/chemistry , Pelizaeus-Merzbacher Disease/genetics , Amino Acid Sequence , Animals , Brain/metabolism , COS Cells , Cell Membrane/metabolism , Cells, Cultured/metabolism , Chlorocebus aethiops , Cross-Linking Reagents/pharmacology , Cystine/chemistry , Dimerization , Humans , Molecular Sequence Data , Mutagenesis, Site-Directed , Myelin Proteolipid Protein/genetics , Oligodendroglia/metabolism , Protein Conformation , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Structure, Tertiary , Rats , Recombinant Fusion Proteins/chemistry , Transcription Factor CHOP/biosynthesis , Transcription Factor CHOP/genetics , Transfection , Unfolded Protein Response
5.
Brain Res ; 1258: 1-11, 2009 Mar 03.
Article in English | MEDLINE | ID: mdl-19150438

ABSTRACT

The neuregulins are a family of polypeptide factors implicated in a wide range of neurological and psychiatric disorders including multiple sclerosis, schizophrenia, and Alzheimer's disease. Many alternatively-spliced forms of the NRG1 gene are released as soluble factors that can diffuse to near and distant sites within the nervous system where they can accumulate through binding to highly specific heparan-sulfate proteoglycans in the extracellular matrix. Here we have determined the sites of synthesis and accumulation of heparin-binding neuregulin forms in human neocortex, white matter, cerebral spinal fluid, and serum by immunostaining and measurement of neuregulin activity. While neuregulin precursors are expressed predominately within cortical neurons, soluble neuregulin accumulates preferentially on the surface of white matter astrocytes. Consistently, neuregulin activity can be released from the extracellular matrix of human brain by protease treatment. Neuregulin activity is also detectable in human cerebral spinal fluid where its expression appears to be altered in neuronal disorders. While cerebral spinal fluid neuregulin levels were unaltered in patients with multiple sclerosis, they were slightly reduced in amyotrophic lateral sclerosis and Parkinson's disease (p<0.15), but significantly increased in Alzheimer's disease (p<0.01). While not detected in human serum, a novel neuregulin antagonist activity was identified in human serum that could have prevented its detection. These results suggest that human neuregulin is selectively targeted from cortical neurons to white matter extracellular matrix where it exists in steady-state equilibrium with cerebral spinal fluid where it has the potential to serve as a biological marker in human neuronal disorders.


Subject(s)
Brain/metabolism , Neuregulin-1/cerebrospinal fluid , Neuregulin-1/metabolism , Alzheimer Disease/cerebrospinal fluid , Amyotrophic Lateral Sclerosis/cerebrospinal fluid , Astrocytes/metabolism , Autopsy , Blotting, Western , Extracellular Matrix/metabolism , Heparin/metabolism , Humans , Immunohistochemistry , Multiple Sclerosis/cerebrospinal fluid , Nerve Fibers, Myelinated/metabolism , Neuregulin-1/blood , Neurons/metabolism , Parkinson Disease/cerebrospinal fluid
6.
Ann N Y Acad Sci ; 883(1): 281-293, 1999 Oct.
Article in English | MEDLINE | ID: mdl-29086945

ABSTRACT

In order to better understand the pathogenesis of demyelination in P0 knockout (P0-/-) mice, we analyzed the myelin gene expression and the localization of myelin proteins in P0 null mouse sciatic nerve. We have demonstrated that the severe demyelinating neuropathy of P0-knockout mouse is associated with changes in the program of myelin gene expression. Some changes in myelin gene expression occur early, others occur during adulthood. We also provide evidence that the absence of P0 is associated with changes in the localization of specific paranodal proteins in the peripheral nerve. These data suggest that P0 plays an important role, either directly or indirectly, in the program of Schwann cell gene expression and in the specific distribution of peripheral myelin proteins. Furthermore, myelin gene dysregulation and improper localization of paranodal proteins may account, in part, for the pathogenesis of demyelination in P0-knockout mice, as well as in human demyelinating peripheral neuropathy associated with mutations in the P0 gene.

SELECTION OF CITATIONS
SEARCH DETAIL