Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Anal Sci ; 39(5): 627, 2023 May.
Article in English | MEDLINE | ID: mdl-37032364
2.
Anal Sci ; 39(5): 695-704, 2023 May.
Article in English | MEDLINE | ID: mdl-36656414

ABSTRACT

Dissolved palladium (Pd), platinum (Pt), and gold (Au) form inert chloride complexes at low concentrations of pmol/kg in environmental water, thus rendering difficulty in the development of a precise analytical method for these metals. Herein, we report the preconcentration of Pd, Pt, and Au with a chelating fiber Vonnel-en and a chelating resin TYP-en with ethylenediamine (en) groups. Batch adsorption experiments reveal the adsorption capacity of Vonnel-en for Pd(II), Pt(IV), and Au(III) in 0.10 M HCl as 0.53, 0.22, and 0.27 mmol/g, respectively. The adsorption capacity of TYP-en for Pd(II), Pt(IV), and Au(III) in 0.10 M HCl is 0.31, 0.17, and 0.52 mmol/g, respectively. In column extraction experiments using small-volume samples containing Pd(II), Pt(II), Pt(IV), Au(I), or Au(III) at concentrations of µmol/kg, TYP-en is able to quantitatively recover Pd, Pt, and Au from 0.01 to 0.2 M HCl irrespective of their oxidation states. In contrast, Vonnel-en is unable to quantitatively recover Au(I). In column extraction experiments using large-volume samples containing Pd(II), Pt(IV), and Au(III) at concentrations of pmol/kg, the recovery of Pd(II), Pt(IV), and Au(III) by TYP-en from 0.07 M HCl is 100-105%. However, the recovery of Pd(II), Pt(IV), and Au(III) by Vonnel-en from 0.03 to 0.3 M HCl is 102-110, 7-15, and 20-52%, respectively. Thus, the chelating resin TYP-en has a high potential for the multielemental determination of Pd, Pt, and Au in environmental water.

3.
Anal Chim Acta ; 1091: 146-159, 2019 Dec 24.
Article in English | MEDLINE | ID: mdl-31679568

ABSTRACT

Molybdenum (Mo) is a redox-sensitive element and its concentrations and stable isotope compositions are widely used as a redox proxy in paleoceanography. Tungsten (W) is an emerging new isotope proxy, which has potential as a tracer for hydrothermal and early diagenetic processes. We present a new method for the precise and accurate analysis of Mo and W concentrations and isotope compositions from one single sample aliquot, thus saving mass of a sample and making the results directly comparable without concerns related to analytical or natural sample heterogeneity. After acid digestion, Mo and W are separated from the sample matrix using chelating resin NOBIAS Chelate-PA1 and anion exchange resin AG1 X8. Matrix removal is highly efficient: the remaining percentage is 10-2 to 10-5% with respect to the initial weight. Subsequently, samples are measured for Mo and W concentrations and isotope compositions using multi-collector inductivity coupled plasma mass spectrometry (MC-ICP-MS). For mass bias correction and determination of concentrations, we use standard-sample bracketing and in addition an external correction method employing ruthenium (Ru) for Mo and rhenium (Re) for W. This double correction approach results in an external reproducibility of or below 0.10‰ (2SD) for δ98Mo and 0.05‰ for δ186W based on ICP standard solutions (NIST SRM 3134 lot No. 130418 for Mo and NIST SRM 3163 lot No. 080331 for W). We present data for Mo and W in 12 geological reference materials including igneous rocks, sedimentary rocks, marine sediments, and manganese nodules. For Mo our method reproduces published values for the geological standard materials within analytical error of published values. For W, although published data do not always agree for a given geological standard material, our data agree within error with more recent data. We interpret a cause of the deviations is due to unknown effects of a desolvating nebulizer for MC-ICP-MS.

4.
Sci Rep ; 9(1): 11652, 2019 08 12.
Article in English | MEDLINE | ID: mdl-31406147

ABSTRACT

Recent studies have elucidated that iron (Fe) is a critical trace metal that influences the productivity of marine ecosystems and the biogeochemical cycles of other elements in the modern ocean. However, our understanding of the biogeochemistry of Fe remains incomplete. Herein, we report basin-scale and full-depth sectional distributions of total dissolvable iron (tdFe), dissolved iron (dFe), and labile particulate iron (lpFe = tdFe - dFe) in the North Pacific Ocean, as observed during three cruises of the GEOTRACES Japan program. We found that lpFe dominates tdFe and is significantly correlated with labile particulate aluminum (lpAl): lpFe [nmol kg-1] = (0.544 ± 0.005) lpAl [nmol kg-1] + 0.11 ± 0.04, r2 = 0.968, n = 432. The results indicate a major lithogenic contribution to the distribution of particulate Fe. For dFe, the unique distribution is attributed to the combined effects of biogeochemical cycling, manganese reduction, and lithogenic contribution. Based on concurrent observations of Fe, Al, and manganese (Mn), we infer that the width of the boundary scavenging zone is approximately 500 km off the Aleutian shelf. We estimate the inventory of tdFe in the North Pacific as 1.1 × 1012 mol, which is approximately four times that of dFe. Our results emphasize the potential importance of lpFe in the ocean's iron cycle.

5.
Anal Sci ; 35(9): 1015-1020, 2019 Sep 10.
Article in English | MEDLINE | ID: mdl-31130577

ABSTRACT

Zirconium, niobium, hafnium, and tantalum are dissolved in seawater as hydroxide complexes at a concentration as low as 0.01 - 370 pmol kg-1 and are expected to be potential tracers for water masses in the ocean. Herein, we report a new analytical method for the multielemental determination of the four elements on the basis of column extraction, using a NOBIAS Chelate-PA 1 resin that contains ethylenediaminetriacetic acid groups. The elements were collected on the resin from seawater that had been added with 3.8 mM HF at pH 6.0, and were eluted with 5 M HF. After the evaporation of 5 M HF, the elements were dissolved in 0.5 M HNO3-6 mM H2SO4-1 mM HF and were determined by a high resolution ICP-MS, using a calibration curve method. We optimized the procedure to achieve quantitative recoveries and low backgrounds for the elements, although the complex formation between the metal ions and NOBIAS Chelate-PA 1 was decelerated by the seawater matrix. The method was tested by investigating the seawater samples of reference material and those collected from the depths at a station in the western North Pacific Ocean.

6.
Anal Bioanal Chem ; 410(18): 4469-4479, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29721576

ABSTRACT

Certification of trace metals in seawater certified reference materials (CRMs) NASS-7 and CASS-6 is described. At the National Research Council Canada (NRC), column separation was performed to remove the seawater matrix prior to the determination of Cd, Cr, Cu, Fe, Pb, Mn, Mo, Ni, U, V, and Zn, whereas As was directly measured in 10-fold diluted seawater samples, and B was directly measured in 200-fold diluted seawater samples. High-resolution inductively coupled plasma mass spectrometry (HR-ICPMS) was used for elemental analyses, with double isotope dilution for the accurate determination of B, Cd, Cr, Cu, Fe, Pb, Mo, Ni, U, and Zn in seawater NASS-7 and CASS-6, and standard addition calibration for As, Co, Mn, and V. In addition, all analytes were measured using standard addition calibration with triple quadrupole (QQQ)-ICPMS to provide a second set of data at NRC. Expert laboratories worldwide were invited to contribute data to the certification of trace metals in NASS-7 and CASS-6. Various analytical methods were employed by participants including column separation, co-precipitation, and simple dilution coupled to ICPMS detection or flow injection analysis coupled to chemiluminescence detection, with use of double isotope dilution calibration, matrix matching external calibration, and standard addition calibration. Results presented in this study show that majority of laboratories have demonstrated their measurement capabilities for the accurate determination of trace metals in seawater. As a result of this comparison, certified/reference values and associated uncertainties were assigned for 14 elements in seawater CRMs NASS-7 and CASS-6, suitable for the validation of methods used for seawater analysis.

8.
Anal Chim Acta ; 967: 1-11, 2017 05 15.
Article in English | MEDLINE | ID: mdl-28390480

ABSTRACT

Stable isotope ratios of nickel, copper, and zinc are powerful tools for elucidating the biogeochemical cycling of trace metals in the ocean. However, analytical difficulties have impeded isotopic studies of these metals. We present a simple and rapid method for simultaneous analysis of Ni, Cu, and Zn isotope ratios in seawater using NOBIAS Chelate-PA1 resin and anion exchange resin. A NOBIAS Chelate-PA1 resin column was used to quantitatively collect Ni, Cu, and Zn from seawater and thoroughly remove the seawater matrix. Subsequent anion exchange purified and separated the Ni, Cu, and Zn from each other. The blanks used in this method (0.22 ng for Ni, 0.29 ng for Cu, and 0.53 ng for Zn) were sufficiently low to determine the isotope ratios of Ni, Cu, and Zn in surface seawater. Using this method, we analyzed GEOTRACES reference seawater samples (i.e., SAFe D1 and SAFe D2), National Research Council Canada certified materials (i.e., CASS-5 and NASS-6), and seawater samples collected from different depths in the subarctic South Pacific. The results were consistent with previously reported values. This method is expected to accelerate isotopic research and contribute to our understanding of biogeochemical cycling in the ocean.

9.
Anal Chim Acta ; 854: 183-90, 2015 Jan 07.
Article in English | MEDLINE | ID: mdl-25479883

ABSTRACT

A novel automated off-line preconcentration system for trace metals (Al, Mn, Fe, Co, Ni, Cu, Zn, Cd, and Pb) in seawater was developed by improving a commercially available solid-phase extraction system SPE-100 (Hiranuma Sangyo). The utilized chelating resin was NOBIAS Chelate-PA1 (Hitachi High-Technologies) with ethylenediaminetriacetic acid and iminodiacetic acid functional groups. Parts of the 8-way valve made of alumina and zirconia in the original SPE-100 system were replaced with parts made of polychlorotrifluoroethylene in order to reduce contamination of trace metals. The eluent pass was altered for the back flush elution of trace metals. We optimized the cleaning procedures for the chelating resin column and flow lines of the preconcentration system, and developed a preconcentration procedure, which required less labor and led to a superior performance compared to manual preconcentration (Sohrin et al.). The nine trace metals were simultaneously and quantitatively preconcentrated from ∼120 g of seawater, eluted with ∼15 g of 1M HNO3, and determined by HR-ICP-MS using the calibration curve method. The single-step preconcentration removed more than 99.998% of Na, K, Mg, Ca, and Sr from seawater. The procedural blanks and detection limits were lower than the lowest concentrations in seawater for Mn, Ni, Cu, and Pb, while they were as low as the lowest concentrations in seawater for Al, Fe, Co, Zn, and Cd. The accuracy and precision of this method were confirmed by the analysis of reference seawater samples (CASS-5, NASS-5, GEOTRACES GS, and GD) and seawater samples for vertical distribution in the western North Pacific Ocean.


Subject(s)
Edetic Acid/chemistry , Seawater/chemistry , Trace Elements/analysis , Automation
10.
Nat Commun ; 5: 5663, 2014 Dec 05.
Article in English | MEDLINE | ID: mdl-25476795

ABSTRACT

Trace elements and their isotopes are being actively studied as powerful tracers in the modern ocean and as proxies for the palaeocean. Although distributions and fractionations have been reported for stable isotopes of dissolved Fe, Cu, Zn and Cd in the ocean, the data remain limited and only preliminary explanations have been given. Copper is of great interest because it is either essential or toxic to organisms and because its distribution reflects both biological recycling and scavenging. Here we present new isotopic composition data for dissolved Cu (δ(65)Cu) in seawater and rainwater. The Cu isotopic composition in surface seawater can be explained by the mixing of rain, river and deep seawater. In deep seawater, δ(65)Cu becomes heavier with oceanic circulation because of preferential scavenging of the lighter isotope ((63)Cu). In addition, we constrain the marine biogeochemical cycling of Cu using a new box model based on Cu concentrations and δ(65)Cu.


Subject(s)
Copper/chemistry , Isotopes/chemistry , Seawater/chemistry , Oceans and Seas
11.
Anal Chim Acta ; 784: 33-41, 2013 Jun 19.
Article in English | MEDLINE | ID: mdl-23746405

ABSTRACT

Copper is an essential trace metal that shows a vertical recycled-scavenged profile in the ocean. To help elucidate the biogeochemical cycling of Cu in the present and past oceans, it is important to determine the distribution of Cu isotopes in seawater. However, precise isotopic analysis of Cu has been impaired by the low concentrations of Cu as well as co-existing elements that interfere with measurements by multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). The objective of this study is to develop a simple Cu pre-concentration method using Nobias-chelate PA1 resin (Hitachi High Technologies). This extraction followed by anion exchange, allows precise analysis of the Cu isotopic composition in seawater. Using this method, Cu was quantitatively concentrated from seawater and >99.9999% of the alkali and alkaline earth metals were removed. The technique has a low procedural blank of 0.70 ng for Cu for a 2L sample and the precision of the Cu isotopic analysis was ±0.07‰ (±2SD, n=6). We applied this method to seawater reference materials (i.e., CASS-5 and NASS-6) and seawater samples obtained from the northwestern Pacific Ocean. The range of dissolved δ(65)Cu was 0.40-0.68‰.


Subject(s)
Chelating Agents/chemistry , Copper/analysis , Ethylenediamines/chemistry , Ion Exchange Resins/chemistry , Mass Spectrometry/methods , Seawater/analysis , Spectrophotometry, Atomic/methods , Isotopes/analysis , Pacific Ocean , Reproducibility of Results
12.
Anal Bioanal Chem ; 405(9): 2771-83, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23397089

ABSTRACT

Continuous developments in inorganic mass spectrometry techniques, including a combination of an inductively coupled plasma ion source and a magnetic sector-based mass spectrometer equipped with a multiple-collector array, have revolutionized the precision of isotope ratio measurements, and applications of inorganic mass spectrometry for biochemistry, geochemistry, and marine chemistry are beginning to appear on the horizon. Series of pioneering studies have revealed that natural stable isotope fractionations of many elements heavier than S (e.g., Fe, Cu, Zn, Sr, Ce, Nd, Mo, Cd, W, Tl, and U) are common on Earth, and it had been widely recognized that most physicochemical reactions or biochemical processes induce mass-dependent isotope fractionation. The variations in isotope ratios of the heavy elements can provide new insights into past and present biochemical and geochemical processes. To achieve this, the analytical community is actively solving problems such as spectral interference, mass discrimination drift, chemical separation and purification, and reduction of the contamination of analytes. This article describes data calibration and standardization protocols to allow interlaboratory comparisons or to maintain traceability of data, and basic principles of isotope fractionation in nature, together with high-selectivity and high-yield chemical separation and purification techniques for stable isotope studies.


Subject(s)
Isotopes/analysis , Mass Spectrometry/methods , Metals, Heavy/analysis , Animals , Chemical Fractionation/instrumentation , Chemical Fractionation/methods , Geology/instrumentation , Geology/methods , Geology/standards , Humans , Mass Spectrometry/instrumentation , Mass Spectrometry/standards , Metabolomics/instrumentation , Metabolomics/methods , Metabolomics/standards
13.
Front Microbiol ; 3: 359, 2012.
Article in English | MEDLINE | ID: mdl-23181057

ABSTRACT

This study investigated the impact of atmospheric metal deposition on natural phytoplankton communities at open-ocean and coastal sites in the Sargasso Sea during the spring bloom. Locally collected aerosols with different metal contents were added to natural phytoplankton assemblages from each site, and changes in nitrate, dissolved metal concentration, and phytoplankton abundance and carbon content were monitored. Addition of aerosol doubled the concentrations of cadmium (Cd), cobalt (Co), copper (Cu), iron (Fe), manganese (Mn), and nickel (Ni) in the incubation water. Over the 3-day experiments, greater drawdown of dissolved metals occurred in the open ocean water, whereas little metal drawdown occurred in the coastal water. Two populations of picoeukaryotic algae and Synechococcus grew in response to aerosol additions in both experiments. Particulate organic carbon increased and was most sensitive to changes in picoeukaryote abundance. Phytoplankton community composition differed depending on the chemistry of the aerosol added. Enrichment with aerosol that had higher metal content led to a 10-fold increase in Synechococcus abundance in the oceanic experiment but not in the coastal experiment. Enrichment of aerosol-derived Co, Mn, and Ni were particularly enhanced in the oceanic experiment, suggesting the Synechococcus population may have been fertilized by these aerosol metals. Cu-binding ligand concentrations were in excess of dissolved Cu in both experiments, and increased with aerosol additions. Bioavailable free hydrated Cu(2+) concentrations were below toxicity thresholds throughout both experiments. These experiments show (1) atmospheric deposition contributes biologically important metals to seawater, (2) these metals are consumed over time scales commensurate with cell growth, and (3) growth responses can differ between distinct Synechococcus or eukaryotic algal populations despite their relatively close geographic proximity and taxonomic similarity.

14.
J Am Chem Soc ; 134(50): 20262-5, 2012 Dec 19.
Article in English | MEDLINE | ID: mdl-23181635

ABSTRACT

Novel iron-catalyzed amination reactions of various aryl bromides have been developed for the synthesis of diaryl- and triarylamines. The key to the success of this protocol is the use of in situ generated magnesium amides in the presence of a lithium halide, which dramatically increases the product yield. The present method is simple and free of precious and expensive metals and ligands, thus providing a facile route to triarylamines, a recurrent core unit in organic electronic materials as well as pharmaceuticals.


Subject(s)
Amines/chemical synthesis , Iron/chemistry , Amination , Catalysis
15.
Anal Chim Acta ; 727: 71-7, 2012 May 21.
Article in English | MEDLINE | ID: mdl-22541826

ABSTRACT

A novel low-blank method is described for the analysis of bismuth in seawater based on preconcentration using an ethylenediaminetriacetic acid chelating resin column followed by determination with inductively coupled plasma sector-field mass spectrometry (ICPSFMS). A sample is siphoned into and drains through the column with the flow rate being kept constant by using a flotation device. Bi in 250 mL of acidified seawater is extracted onto the column in this process and eluted with 2 mL of 3 M HNO(3) followed by 3 mL of ultra-high purity water. The concentration of Bi in the eluate is measured by ICPMS. The benefits of the method compared to others are its simplicity, a smaller amount of seawater, and lower procedural blanks and detection limits at pg kg(-1) levels. Data on dissolved Bi in open ocean reference samples of SAFe and GEOTRACES programs are presented for the first time.


Subject(s)
Bismuth/analysis , Chelating Agents/chemistry , Edetic Acid/chemistry , Mass Spectrometry/methods , Resins, Synthetic/chemistry , Seawater/chemistry , Oceans and Seas
16.
Anal Chem ; 80(16): 6267-73, 2008 Aug 15.
Article in English | MEDLINE | ID: mdl-18646776

ABSTRACT

GEOTRACES is an international research project on marine biogeochemical cycles of trace elements and their isotopes. GEOTRACES key trace metals in seawater are Al (8-1000 ng/kg), Mn (4-300 ng/kg), Fe (1-100 ng/kg), Cu (30-300 ng/kg), Zn (3-600 ng/kg), and Cd (0.1-100 ng/kg), of which global oceanic distribution will be determined on a number of research cruises. This work introduces a novel method of solid-phase extraction to determine Al, Mn, Fe, Co, Ni, Cu, Zn, Cd, and Pb in seawater by adjusting the pH of the sample to 6 and carrying out a single preconcentration step. The trace metals were collected from approximately 120 mL of seawater using a column of a chelating resin containing the ethylenediaminetriacetic acid functional group and eluted with approximately 15 mL of 1 M HNO3. Mn and Fe in the eluate were measured by inductively coupled plasma mass spectrometry (ICPMS) using the dynamic reaction cell mode, and the other metals were measured using the standard mode. Using this procedure, the trace metals were collected quantitatively, while >99.9% of alkali and alkaline earth metals in seawater were removed. The procedural blank was <7% of the mean concentration in deep ocean waters, except 16% for Pb. The overall detection limit was <14% of the mean concentration in deep ocean waters. The RSD was <9%. Our values for the trace metals in the certified reference materials of seawater NASS-5 and nearshore seawater CASS-4 agreed with the certified values (except that there is no certified value for Al). This method was also successfully applied to the reference materials of open-ocean seawater produced by the SAFe program. Our Fe concentrations were 5.9 +/- 0.7 ng/kg for surface water (S1) and 50.4 +/- 2.9 ng/kg for deep water (D2), which are in agreement with the interlaboratory averages of 5.4 +/- 2.4 and 50.8 +/- 9.5 ng/L, respectively. The data for other metals were oceanographically consistent.

17.
Anal Sci ; 24(2): 225-9, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18270413

ABSTRACT

Novel 4-acyl-5-pyrazolones having aza-15-crown-5 (HPMP-A15C5) and aza-18-crown-6 (HPMP-A18C6) moieties as an intramolecular synergist have been synthesized by simple coupling reactions between 1-phenyl-3-methyl-4-chloroacetyl-5-pyrazolone and the corresponding azacrown ethers. The solvent extraction of the divalent metal ions (Mn(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+), Cd(2+) and Pb(2+)) were examined. Synergistic extractions with 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone (HPMBP) and benzocrown ethers were also examined for a comparison. Extractions with the novel acylpyrazolones were unique and quite different from those with HPMBP and benzocrown ethers. The synergistic effect with benzocrown ethers was low, and an obvious difference brought by the ring size was not observed. The extractions of the divalent metal ions with HPMP-A18C6 were generally enhanced, as compared to those alone with HPMBP; on the contrary, the extractions with HPMP-A15C5 were relatively poor.


Subject(s)
Cations, Divalent/analysis , Crown Ethers/chemistry , Metals, Heavy/analysis , Pyrazoles/chemistry , Hydrogen-Ion Concentration , Molecular Structure , Pyrazoles/chemical synthesis , Reproducibility of Results , Sensitivity and Specificity , Solvents/chemistry
18.
Anal Chem ; 80(23): 9213-9, 2008 Dec 01.
Article in English | MEDLINE | ID: mdl-19551942

ABSTRACT

It is widely recognized that the natural isotopic variation of Mo can provide crucial information about the geochemical circulation of Mo, and the ocean is an important reservoir of Mo. To obtain precise isotopic data on Mo in seawater samples using multiple collector-inductively coupled plasma mass spectrometry (MC-ICPMS), we have developed a preconcentration technique using 8-hydroxyquinoline bonded covalently to a vinyl polymer resin (TSK-8HQ). By optimizing the procedure, Mo in seawater could be effectively separated from matrix elements such as alkali, alkaline earth, and transition metals. With this technique, even with a 50-fold enrichment factor, the changes in the 98Mo/95Mo ratio during preconcentration were smaller than twice the standard deviation (SD) in this study. Mass discrimination of Mo isotopes during the measurement was externally corrected for by normalizing 86Sr/88Sr to 0.1194 using an exponential law. We evaluated delta98/95Mo to a precision of +/- 0.08 per thousand (+/-2 SD); this value was found to be less than one-third of previous reported values. Moreover, we were able to determine an accurate ratio for every pair of stable Mo isotopes, which was impossible with previous methods owing to the isobaric interference from the external elements (Zr and Ru). In this study, delta92/98Mo in seawater was first determined so that it had the smallest relative error. We applied the proposed method to four kinds of seawater samples. The Mo compositions were constant among them, with average delta98/95Mo and delta92/98Mo values of 2.45 +/- 0.11 and -4.94 +/- 0.09 per thousand (+/-2 SD), respectively. Our data indicate that seawater is enriched in heavy Mo isotopes than previously reported.

19.
Anal Chim Acta ; 594(1): 52-60, 2007 Jun 26.
Article in English | MEDLINE | ID: mdl-17560385

ABSTRACT

A new technique for the determination of suspended particulate trace metals (P-metals >0.2 microm), such as Co, Ni, Cu, Zn, Cd and Pb, in open ocean seawater has been developed by using microwave digestion coupled with flow injection inductively coupled plasma mass spectrometry (FI-ICP-MS). Suspended particulate matter (SPM) was collected from 500 mL of seawater on a Nuclepore filter (0.2 microm) using a closed filtration system. Both the SPM and filter were completely dissolved by microwave digestion. Reagents for the digestion were evaporated using a clean evaporation system, and the metals were redissolved in 0.8 M HNO3. The solution was diluted with buffer solution to give pH 5.0 and the metals were determined by FI-ICP-MS using a chelating adsorbent of 8-hydroxyquinoline immobilized on fluorinated metal alkoxide glass (MAF-8HQ). The procedure blanks with a filter were found to be 0.048+/-0.008, 10.3+/-0.3, 0.27+/-0.05, 3.3+/-1.8, 0.02+/-0.03 and 0.85+/-0.09 ng L(-1) for Co, Ni, Cu, Zn, Cd and Pb, respectively (n=14). Detection limits defined as 3 times the standard deviation of the blanks were 0.023, 0.90, 0.14, 5.3, 0.078 and 0.28 ng L(-1) for Co, Ni, Cu, Zn, Cd and Pb, respectively. Accuracy was evaluated using certified reference materials of chlorella (NES CRM No. 3) and marine sediment (HISS-1). The method was applied to the determination of vertical distributions for P-Co, Ni, Cu, Zn, Cd and Pb in the Western North Pacific.


Subject(s)
Filtration/methods , Mass Spectrometry/methods , Metals/analysis , Microwaves , Seawater/chemistry , Trace Elements/analysis
20.
Anal Chim Acta ; 583(2): 296-302, 2007 Feb 05.
Article in English | MEDLINE | ID: mdl-17386559

ABSTRACT

Here, we present the first simultaneous preconcentration and determination of ultratrace (pmol kg(-1) level) Zr, Hf, Nb, Ta and W in seawater, both in the form of dissolved and acid-dissolvable species. 8-Hydroxyquinoline (8HQ) bonded covalently to a vinyl polymer resin, TSK-8HQ, was used in a chelating adsorbent column to concentrate the metals. The greatest advantage of this resin is its endurance to 5M HF, since this is an effective eluent for all five metals. The analytes were successfully concentrated from 250 mL seawater with a 50-fold concentration factor through the column extraction and evaporation. The detection limit was 0.009-0.15 pmol kg(-1). The procedure blank determined using ultra pure water as a sample was 0.005-0.37 pmol kg(-1). The five metals were quantitatively recovered from seawater with good precision (2-4%). The effect of sample pH, sample flow rate, eluent composition and sample pretreatment were carefully studied. This method was applied to seawater.


Subject(s)
Hydroxyquinolines/analysis , Seawater/analysis , Solid Phase Extraction/methods , Trace Elements/analysis , Mass Spectrometry/methods , Sensitivity and Specificity , Trace Elements/chemistry , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...