Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Adv Ther ; 41(3): 901-914, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38286962

ABSTRACT

Dysbiosis corresponds to the disruption of a formerly stable, functionally complete microbiota. In the gut, this imbalance can lead to adverse health outcomes in both the short and long terms, with a potential increase in the lifetime risks of various noncommunicable diseases and disorders such as atopy (like asthma), inflammatory bowel disease, neurological disorders, and even behavioural and psychological disorders. Although antibiotics are highly effective in reducing morbidity and mortality in infectious diseases, antibiotic-associated diarrhoea is a common, non-negligible clinical sign of gut dysbiosis (and the only visible one). Re-establishment of a normal (functional) gut microbiota is promoted by completion of the clinically indicated course of antibiotics, the removal of any other perturbing external factors, the passage of time (i.e. recovery through the microbiota's natural resilience), appropriate nutritional support, and-in selected cases-the addition of probiotics. Systematic reviews and meta-analyses of clinical trials have confirmed the strain-specific efficacy of some probiotics (notably the yeast Saccharomyces boulardii CNCM I-745 and the bacterium Lactobacillus rhamnosus GG) in the treatment and/or prevention of antibiotic-associated diarrhoea in children and in adults. Unusually for a probiotic, S. boulardii is a eukaryote and is not therefore directly affected by antibiotics-making it suitable for administration in cases of antibiotic-associated diarrhoea. A robust body of evidence from clinical trials and meta-analyses shows that the timely administration of an adequately dosed probiotic (upon initiation of antibiotic treatment or within 48 h) can help to prevent or resolve the consequences of antibiotic-associated dysbiosis (such as diarrhoea) and promote the resilience of the gut microbiota and a return to the pre-antibiotic state. A focus on the prescription of evidence-based, adequately dosed probiotics should help to limit unjustified and potentially ineffective self-medication.


Subject(s)
Lacticaseibacillus rhamnosus , Probiotics , Saccharomyces boulardii , Adult , Child , Humans , Anti-Bacterial Agents/adverse effects , Diarrhea/chemically induced , Diarrhea/prevention & control , Dysbiosis/chemically induced , Dysbiosis/therapy , Probiotics/therapeutic use , Saccharomyces cerevisiae , Meta-Analysis as Topic , Systematic Reviews as Topic
3.
Front Microbiol ; 8: 1790, 2017.
Article in English | MEDLINE | ID: mdl-28970823

ABSTRACT

Faecalibacterium prausnitzii is a commensal bacterium, ubiquitous in the gastrointestinal tracts of animals and humans. This species is a functionally important member of the microbiota and studies suggest it has an impact on the physiology and health of the host. F. prausnitzii is the only identified species in the genus Faecalibacterium, but a recent study clustered strains of this species in two different phylogroups. Here, we propose the existence of distinct species in this genus through the use of comparative genomics. Briefly, we performed analyses of 16S rRNA gene phylogeny, phylogenomics, whole genome Multi-Locus Sequence Typing (wgMLST), Average Nucleotide Identity (ANI), gene synteny, and pangenome to better elucidate the phylogenetic relationships among strains of Faecalibacterium. For this, we used 12 newly sequenced, assembled, and curated genomes of F. prausnitzii, which were isolated from feces of healthy volunteers from France and Australia, and combined these with published data from 5 strains downloaded from public databases. The phylogenetic analysis of the 16S rRNA sequences, together with the wgMLST profiles and a phylogenomic tree based on comparisons of genome similarity, all supported the clustering of Faecalibacterium strains in different genospecies. Additionally, the global analysis of gene synteny among all strains showed a highly fragmented profile, whereas the intra-cluster analyses revealed larger and more conserved collinear blocks. Finally, ANI analysis substantiated the presence of three distinct clusters-A, B, and C-composed of five, four, and four strains, respectively. The pangenome analysis of each cluster corroborated the classification of these clusters into three distinct species, each containing less variability than that found within the global pangenome of all strains. Here, we propose that comparison of pangenome subsets and their associated α values may be used as an alternative approach, together with ANI, in the in silico classification of new species. Altogether, our results provide evidence not only for the reconsideration of the phylogenetic and genomic relatedness among strains currently assigned to F. prausnitzii, but also the need for lineage (strain-based) differentiation of this taxon to better define how specific members might be associated with positive or negative host interactions.

4.
Appl Microbiol Biotechnol ; 100(1): 385-396, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26476654

ABSTRACT

Probiotics are live microorganisms which when administered in adequate amounts, confer health benefits on the host. Their use is more and more widespread for both prevention and treatment of diseases, including traveler's diarrhea and inflammatory bowel diseases (IBDs). In this work, we isolated and characterized novel candidate probiotic strains from pulque (xaxtle), a traditional Mexican alcoholic fermented beverage. A total of 14 strains were obtained from xaxtle samples isolated from three different Mexican regions. Species identification was performed by biochemical methods and 16S rRNA gene targeted PCR. The isolates belonged to the Lactobacillus plantarum, Lactobacillus paracasei, Lactobacillus brevis, and Lactobacillus composti phylogenetic groups, with L. brevis being the most dominant group. Bacteria were tested for lysozyme, low pH, and bile acid resistance. Moreover, the strains were tested for adherence to human intestinal epithelial cells and screened for their immunomodulatory properties using a cellular model. Selected bacterial strains with anti-inflammatory properties were then tested in vivo in a dinitro-benzene sulfonic acid (DNBS)-induced chronic colitis mouse model, and weight loss, gut permeability, and cytokine profiles were measured as readouts of inflammation. One of the selected strains, Lactobacillus sanfranciscensis LBH1068, improved mice health as observed by a reduction of weight loss, significant decreases in gut permeability, and cytokine modulation. Altogether, our results highlighted the potential of lactobacilli isolated from pulque and in particular the strain L. sanfranciscensis LBH1068 as a novel probiotic to treat IBD.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Beverages/microbiology , Lactobacillus/classification , Lactobacillus/isolation & purification , Probiotics/pharmacology , Probiotics/therapeutic use , Animals , Anti-Inflammatory Agents/isolation & purification , Bacterial Adhesion , Cell Line , Cluster Analysis , Colitis/chemically induced , Colitis/drug therapy , Colitis/pathology , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Dinitrofluorobenzene/analogs & derivatives , Dinitrofluorobenzene/toxicity , Disease Models, Animal , Epithelial Cells/microbiology , Humans , Lactobacillus/physiology , Mexico , Mice , Molecular Sequence Data , Phylogeny , Probiotics/isolation & purification , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL