Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 36
1.
Emerg Microbes Infect ; 13(1): 2300452, 2024 Dec.
Article En | MEDLINE | ID: mdl-38164715

ABSTRACTAlphaviruses are arthropod-borne, single-stranded positive-sense RNA viruses that are recognized as rapidly emerging pathogens. Despite being exquisitely sensitive to the effects of the innate immune response alphaviruses can readily replicate, disseminate, and induce pathogenesis in immunologically competent hosts. Nonetheless, how alphaviruses evade the induction of an innate immune response prior to viral gene expression, or in non-permissive infections, is unknown. Previously we reported the identification of a novel host/pathogen interaction between the viral Capsid (CP) protein and the host IRAK1 protein. The CP/IRAK1 interaction was determined to negatively impact IRAK1-dependent PAMP detection in vitro, however, the precise importance of the CP/IRAK1 interaction to alphaviral infection remained unknown. Here we detail the identification of the CP/IRAK1 interaction determinants of the Sindbis virus (SINV) CP protein and examine the importance of the interaction to alphaviral infection and pathogenesis in vivo using an interaction deficient mutant of the model neurotropic strain of SINV. Importantly, these interaction determinants are highly conserved across multiple Old-World alphaviruses, including Ross River virus (RRV), Mayaro virus (MAYV), Chikungunya virus (CHIKV), and Semliki Forest virus (SFV). In the absence of a functional CP/IRAK1 interaction, SINV replication is significantly restricted and fails to disseminate from the primary site of inoculation due to the induction of a robust type-I Interferon response. Altogether these data indicate that the evasion of IRAK1-dependent signalling is critical to overcoming the host innate immune response and the in vivo data presented here demonstrate the importance of the CP/IRAK1 interaction to neurovirulence and pathogenesis.


Chikungunya virus , Sindbis Virus , Mice , Animals , Sindbis Virus/genetics , Capsid Proteins/genetics , Capsid Proteins/metabolism , Virulence , Chikungunya virus/genetics , Virus Replication
2.
Hum Genomics ; 17(1): 114, 2023 Dec 18.
Article En | MEDLINE | ID: mdl-38105239

BACKGROUND: Despite a clear appreciation of the impact of human pathogens on community health, efforts to understand pathogen dynamics within populations often follow a narrow-targeted approach and rely on the deployment of specific molecular probes for quantitative detection or rely on clinical detection and reporting. MAIN TEXT: Genomic analysis of wastewater samples for the broad detection of viruses, bacteria, fungi, and antibiotic resistance genes of interest/concern is inherently difficult, and while deep sequencing of wastewater provides a wealth of information, a robust and cooperative foundation is needed to support healthier communities. In addition to furthering the capacity of high-throughput sequencing wastewater-based epidemiology to detect human pathogens in an unbiased and agnostic manner, it is critical that collaborative networks among public health agencies, researchers, and community stakeholders be fostered to prepare communities for future public health emergencies or for the next pandemic. A more inclusive public health infrastructure must be built for better data reporting where there is a global human health risk burden. CONCLUSIONS: As wastewater platforms continue to be developed and refined, high-throughput sequencing of human pathogens in wastewater samples will emerge as a gold standard for understanding community health.


Viruses , Wastewater , Humans , Wastewater-Based Epidemiological Monitoring , Viruses/genetics , Bacteria/genetics , Drug Resistance, Microbial/genetics
3.
J Leukoc Biol ; 113(1): 41-57, 2023 01 10.
Article En | MEDLINE | ID: mdl-36822162

Systemic lupus erythematosus development is influenced by both sex and the gut microbiota. Metabolite production is a major mechanism by which the gut microbiota influences the immune system, and we have previously found differences in the fecal metabolomic profiles of lupus-prone female and lupus-resistant male BWF1 mice. Here we determine how sex and microbiota metabolite production may interact to affect lupus. Transcriptomic analysis of female and male splenocytes showed genes that promote phagocytosis were upregulated in BWF1 male mice. Because patients with systemic lupus erythematosus exhibit defects in macrophage-mediated phagocytosis of apoptotic cells (efferocytosis), we compared splenic macrophage efferocytosis in vitro between female and male BWF1 mice. Macrophage efferocytosis was deficient in female compared to male BWF1 mice but could be restored by feeding male microbiota. Further transcriptomic analysis of the genes upregulated in male BWF1 mice revealed enrichment of genes stimulated by PPARγ and LXR signaling. Our previous fecal metabolomics analyses identified metabolites in male BWF1 mice that can activate PPARγ and LXR signaling and identified one in particular, phytanic acid, that is a very potent agonist. We show here that treatment of female BWF1 splenic macrophages with phytanic acid restores efferocytic activity via activation of the PPARγ and LXR signaling pathways. Furthermore, we found phytanic acid may restore female BWF1 macrophage efferocytosis through upregulation of the proefferocytic gene CD36. Taken together, our data indicate that metabolites produced by BWF1 male microbiota can enhance macrophage efferocytosis and, through this mechanism, could potentially influence lupus progression.


Lupus Erythematosus, Systemic , Microbiota , Mice , Male , Female , Animals , PPAR gamma , Phytanic Acid , Mice, Inbred NZB , Macrophages , Phagocytosis , Signal Transduction
4.
Viruses ; 15(1)2023 01 05.
Article En | MEDLINE | ID: mdl-36680204

Alphaviruses are arthropod-borne, single-stranded positive sense RNA viruses that rely on the engagement of host RNA-binding proteins to efficiently complete the viral lifecycle. Because of this reliance on host proteins, the identification of host/pathogen interactions and the subsequent characterization of their importance to viral infection has been an intensive area of study for several decades. Many of these host protein interaction studies have evaluated the Protein:Protein interactions of viral proteins during infection and a significant number of host proteins identified by these discovery efforts have been RNA Binding Proteins (RBPs). Considering this recognition, the field has shifted towards discovery efforts involving the direct identification of host factors that engage viral RNAs during infection using innovative discovery approaches. Collectively, these efforts have led to significant advancements in the understanding of alphaviral molecular biology; however, the precise extent and means by which many RBPs influence viral infection is unclear as their specific contributions to infection, as per any RNA:Protein interaction, have often been overlooked. The purpose of this review is to summarize the discovery of host/pathogen interactions during alphaviral infection with a specific emphasis on RBPs, to use new ontological analyses to reveal potential functional commonalities across alphaviral RBP interactants, and to identify host RBPs that have, and have yet to be, evaluated in their native context as RNA:Protein interactors.


Arthropods , Sindbis Virus , Animals , Sindbis Virus/genetics , RNA-Binding Proteins , RNA, Viral/genetics , Host-Pathogen Interactions , Arthropods/genetics
5.
Pathogens ; 11(11)2022 Oct 28.
Article En | MEDLINE | ID: mdl-36365000

Despite entering an endemic phase, SARS-CoV-2 remains a significant burden to public health across the global community. Wastewater sampling has consistently proven utility to understanding SARS-CoV-2 prevalence trends and genetic variation as it represents a less biased assessment of the corresponding communities. Here, we report that ongoing monitoring of SARS-CoV-2 genetic variation in samples obtained from the wastewatersheds of the city of Louisville in Jefferson county Kentucky has revealed the periodic reemergence of the Delta strain in the presence of the presumed dominant Omicron strain. Unlike previous SARS-CoV-2 waves/emergence events, the Delta reemergence events were geographically restricted in the community and failed to spread into other areas as determined by wastewater analyses. Moreover, the reemergence of the Delta strain did not correlate with vaccination rates as communities with lower relative vaccination have been, to date, not affected. Importantly, Delta reemergence events correlate with increased public health burdens, as indicated by increased daily case rates and mortality relative to non-Delta wastewatershed communities. While the underlying reasons for the reemergence of the Delta variant remain unclear, these data reaffirm the ongoing importance of wastewater genomic analyses towards understanding SARS-CoV-2 as it enters the endemic phase.

6.
Food Environ Virol ; 14(4): 410-416, 2022 12.
Article En | MEDLINE | ID: mdl-35982363

This study aimed to develop a framework for combining community wastewater surveillance with state clinical surveillance for the confirmation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants within the community and to provide recommendations on how to expand on such research and apply the findings in public health responses. Wastewater samples were collected weekly from 17 geographically resolved locations in Louisville/Jefferson County, Kentucky (USA), from February 10 to December 13, 2021. Genomic surveillance and quantitative reverse transcription PCR (RT-qPCR) platforms were used to screen for SARS-CoV-2 in wastewater, and state clinical surveillance was used for confirmation. The study results highlighted an increased epidemiological value of combining community wastewater genomic surveillance and RT-qPCR with conventional case-auditing methods. The spatial scale and temporal frequency of wastewater sampling provided promising sensitivity and specificity for gaining public health screening insights about SARS-CoV-2 emergence, seeding, and spread in communities. Improved national surveillance systems are needed against future pathogens and variants, and wastewater-based genomic surveillance exhibits great potential when coupled with clinical testing. This paper presents evidence that complementary wastewater and clinical testing are cost-effectively enhanced when used in combination, as they provide a strong tool for a joint public health framework. Future pathogens of interest may be examined in either a targeted fashion or using a more global approach where all pathogens are monitored. This study has also provided novel insights developed from evidence-based public health practices.


COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Wastewater , COVID-19/epidemiology , Wastewater-Based Epidemiological Monitoring , Genomics , Public Health Practice
7.
Viruses ; 14(7)2022 06 28.
Article En | MEDLINE | ID: mdl-35891402

Alphaviruses cause significant outbreaks of febrile illness and debilitating multi-joint arthritis for prolonged periods after initial infection. We have previously reported that several host hnRNP proteins bind to the Sindbis virus (SINV) RNAs, and disrupting the sites of these RNA-protein interactions results in decreased viral titers in tissue culture models of infection. Intriguingly, the primary molecular defect associated with the disruption of the hnRNP interactions is enhanced viral structural protein expression; however, the precise underlying mechanisms spurring the enhanced gene expression remain unknown. Moreover, our previous efforts were unable to functionally dissect whether the observed phenotypes were due to the loss of hnRNP binding or the incorporation of polymorphisms into the primary nucleotide sequence of SINV. To determine if the loss of hnRNP binding was the primary cause of attenuation or if the disruption of the RNA sequence itself was responsible for the observed phenotypes, we utilized an innovative protein tethering approach to restore the binding of the hnRNP proteins in the absence of the native interaction site. Specifically, we reconstituted the hnRNP I interaction by incorporating the 20nt bovine immunodeficiency virus transactivation RNA response (BIV-TAR) at the site of the native hnRNP I interaction sequence, which will bind with high specificity to proteins tagged with a TAT peptide. The reestablishment of the hnRNP I-vRNA interaction via the BIV-TAR/TAT tethering approach restored the phenotype back to wild-type levels. This included an apparent decrease in structural protein expression in the absence of the native primary nucleotide sequences corresponding to the hnRNP I interaction site. Collectively, the characterization of the hnRNP I interaction site elucidated the role of hnRNPs during viral infection.


Immunodeficiency Virus, Bovine , Sindbis Virus , Animals , Binding Sites , Cattle , Heterogeneous-Nuclear Ribonucleoproteins/genetics , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Protein Binding , RNA, Viral/metabolism , Sindbis Virus/genetics , Viral Structural Proteins/metabolism
8.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Article En | MEDLINE | ID: mdl-34921113

Here, we show that Porphyromonas gingivalis (Pg), an endogenous oral pathogen, dampens all aspects of interferon (IFN) signaling in a manner that is strikingly similar to IFN suppression employed by multiple viral pathogens. Pg suppressed IFN production by down-regulating several IFN regulatory factors (IRFs 1, 3, 7, and 9), proteolytically degrading STAT1 and suppressing the nuclear translocation of the ISGF3 complex, resulting in profound and systemic repression of multiple interferon-stimulated genes. Pg-induced IFN paralysis was not limited to murine models but was also observed in the oral tissues of human periodontal disease patients, where overabundance of Pg correlated with suppressed IFN generation. Mechanistically, multiple virulence factors and secreted proteases produced by Pg transcriptionally suppressed IFN promoters and also cleaved IFN receptors, making cells refractory to exogenous IFN and inducing a state of broad IFN paralysis. Thus, our data show a bacterial pathogen with equivalence to viruses in the down-regulation of host IFN signaling.


Gingiva/immunology , Host-Pathogen Interactions/immunology , Interferons/metabolism , Interleukins/metabolism , Microbiota , Porphyromonas gingivalis/physiology , Animals , Cell Line , Gingiva/metabolism , Humans , Mice , Primary Cell Culture
9.
Pathogens ; 10(10)2021 Oct 01.
Article En | MEDLINE | ID: mdl-34684220

Throughout the course of the ongoing SARS-CoV-2 pandemic there has been a need for approaches that enable rapid monitoring of public health using an unbiased and minimally invasive means. A major way this has been accomplished is through the regular assessment of wastewater samples by qRT-PCR to detect the prevalence of viral nucleic acid with respect to time and location. Further expansion of SARS-CoV-2 wastewater monitoring efforts to include the detection of variants of interest/concern through next-generation sequencing has enhanced the understanding of the SARS-CoV-2 outbreak. In this report, we detail the results of a collaborative effort between public health and metropolitan wastewater management authorities and the University of Louisville to monitor the SARS-CoV-2 pandemic through the monitoring of aggregate wastewater samples over a period of 28 weeks. Through the use of next-generation sequencing approaches the polymorphism signatures of Variants of Concern/Interest were evaluated to determine the likelihood of their prevalence within the community on the basis of their relative dominance within sequence datasets. Our data indicate that wastewater monitoring of water quality treatment centers and smaller neighborhood-scale catchment areas is a viable means by which the prevalence and genetic variation of SARS-CoV-2 within a metropolitan community of approximately one million individuals may be monitored, as our efforts detected the introduction and emergence of variants of concern in the city of Louisville. Importantly, these efforts confirm that regional emergence and spread of variants of interest/concern may be detected as readily in aggregate wastewater samples as compared to the individual wastewater sheds. Furthermore, the information gained from these efforts enabled targeted public health efforts including increased outreach to at-risk communities and the deployment of mobile or community-focused vaccination campaigns.

10.
Adv Exp Med Biol ; 1327: 169-189, 2021.
Article En | MEDLINE | ID: mdl-34279838

With the largest viral loads in both symptomatic and asymptomatic patients with Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) present in the oral and nasal cavities, agents that act on these two areas have the potential for large therapeutic and prophylactic benefit. A literature review was conducted to elucidate the possible agents useful in treatment of SARS-CoV-2. These agents were evaluated for their current applications, adverse reactions, their current state of study, and any future considerations in their management of coronavirus disease 2019 (COVID-2019). Our review has found that, while there are many promising agents with proven efficacy in their in-vitro efficacy against SARS-CoV-2, more clinical trials and in-vivo studies, as well as safety trials, must be conducted before these agents can be effectively implemented.


COVID-19 , Antiviral Agents/therapeutic use , Humans , SARS-CoV-2 , Viral Load
11.
Pathogens ; 10(6)2021 Jun 19.
Article En | MEDLINE | ID: mdl-34205345

Alphaviruses are positive-sense RNA arboviruses that are capable of causing severe disease in otherwise healthy individuals. There are many aspects of viral infection that determine pathogenesis and major efforts regarding the identification and characterization of virulence determinants have largely focused on the roles of the nonstructural and structural proteins. Nonetheless, the viral RNAs of the alphaviruses themselves play important roles in regard to virulence and pathogenesis. In particular, many sequences and secondary structures within the viral RNAs play an important part in the development of disease and may be considered important determinants of virulence. In this review article, we summarize the known RNA-based virulence traits and host:RNA interactions that influence alphaviral pathogenesis for each of the viral RNA species produced during infection. Overall, the viral RNAs produced during infection are important contributors to alphaviral pathogenesis and more research is needed to fully understand how each RNA species impacts the host response to infection as well as the development of disease.

12.
Virology ; 560: 34-42, 2021 08.
Article En | MEDLINE | ID: mdl-34023723

Alphaviruses are positive sense, RNA viruses commonly transmitted by an arthropod vector to a mammalian or avian host. In recent years, a number of the Alphavirus members have reemerged as public health concerns. Transmission from mosquito vector to vertebrate hosts requires an understanding of the interaction between the virus and both vertebrate and insect hosts to develop rational intervention strategies. The current study uncovers a novel role for capsid protein during Chikungunya virus replication whereby the interaction with viral RNA in the E1 coding region regulates protein synthesis processes early in infection. Studies done in both the mammalian and mosquito cells indicate that interactions between viral RNA and capsid protein have functional consequences that are host species specific. Our data support a vertebrate-specific role for capsid:vRNA interaction in temporally regulating viral translation in a manner dependent on the PI3K-AKT-mTOR pathway.


Capsid Proteins/metabolism , Chikungunya virus/growth & development , Protein Biosynthesis/genetics , RNA, Viral/metabolism , Virus Replication/physiology , Aedes/virology , Animals , Capsid/metabolism , Cell Line , Chikungunya Fever/pathology , Chikungunya virus/genetics , Cricetinae , Gene Expression Regulation, Viral/genetics , Mosquito Vectors/virology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RNA, Viral/genetics , TOR Serine-Threonine Kinases/metabolism
13.
Viruses ; 13(3)2021 02 27.
Article En | MEDLINE | ID: mdl-33673546

Alphaviruses are arthropod-borne RNA viruses which can cause either mild to severe febrile arthritis which may persist for months, or encephalitis which can lead to death or lifelong cognitive impairments. The non-assembly molecular role(s), functions, and protein-protein interactions of the alphavirus capsid proteins have been largely overlooked. Here we detail the use of a BioID2 biotin ligase system to identify the protein-protein interactions of the Sindbis virus capsid protein. These efforts led to the discovery of a series of novel host-pathogen interactions, including the identification of an interaction between the alphaviral capsid protein and the host IRAK1 protein. Importantly, this capsid-IRAK1 interaction is conserved across multiple alphavirus species, including arthritogenic alphaviruses SINV, Ross River virus, and Chikungunya virus; and encephalitic alphaviruses Eastern Equine Encephalitis virus, and Venezuelan Equine Encephalitis virus. The impact of the capsid-IRAK1 interaction was evaluated using a robust set of cellular model systems, leading to the realization that the alphaviral capsid protein specifically inhibits IRAK1-dependent signaling. This inhibition represents a means by which alphaviruses may evade innate immune detection and activation prior to viral gene expression. Altogether, these data identify novel capsid protein-protein interactions, establish the capsid-IRAK1 interaction as a common alphavirus host-pathogen interface, and delineate the molecular consequences of the capsid-IRAK1 interaction on IRAK1-dependent signaling.


Alphavirus/genetics , Interleukin-1 Receptor-Associated Kinases/genetics , Signal Transduction/genetics , Toll-Like Receptors/genetics , Animals , Capsid , Capsid Proteins/genetics , Cell Line , Chikungunya virus/genetics , Encephalitis Virus, Eastern Equine/genetics , Encephalitis Virus, Venezuelan Equine/genetics , HEK293 Cells , Host-Pathogen Interactions/genetics , Humans , Protein Interaction Maps/genetics , RNA, Viral/genetics , Sindbis Virus/genetics , Virus Replication/genetics
14.
mBio ; 11(6)2020 12 01.
Article En | MEDLINE | ID: mdl-33262258

Alphaviruses are positive-sense RNA viruses that utilize a 5' cap structure to facilitate translation of viral proteins and to protect the viral RNA genome. Nonetheless, significant quantities of viral genomic RNAs that lack a canonical 5' cap structure are produced during alphaviral replication and packaged into viral particles. However, the role/impact of the noncapped genomic RNA (ncgRNA) during alphaviral infection in vivo has yet to be characterized. To determine the importance of the ncgRNA in vivo, the previously described D355A and N376A nsP1 mutations, which increase or decrease nsP1 capping activity, respectively, were incorporated into the neurovirulent AR86 strain of Sindbis virus to enable characterization of the impact of altered capping efficiency in a murine model of infection. Mice infected with the N376A nsP1 mutant exhibited slightly decreased rates of mortality and delayed weight loss and neurological symptoms, although levels of inflammation in the brain were similar to those of wild-type infection. Although the D355A mutation resulted in decreased antiviral gene expression and increased resistance to interferon in vitro, mice infected with the D355A mutant showed significantly reduced mortality and morbidity compared to mice infected with wild-type virus. Interestingly, expression of proinflammatory cytokines was found to be significantly decreased in mice infected with the D355A mutant, suggesting that capping efficiency and the production of ncgRNA are vital to eliciting pathogenic levels of inflammation. Collectively, these data indicate that the ncgRNA have important roles during alphaviral infection and suggest a novel mechanism by which noncapped viral RNAs aid in viral pathogenesis.IMPORTANCE Mosquito-transmitted alphaviruses have been the cause of widespread outbreaks of disease that can range from mild illness to lethal encephalitis or severe polyarthritis. There are currently no safe and effective vaccines or therapeutics with which to prevent or treat alphaviral disease, highlighting the need to better understand alphaviral pathogenesis to develop novel antiviral strategies. This report reveals production of noncapped genomic RNAs (ncgRNAs) to be a novel determinant of alphaviral virulence and offers insight into the importance of inflammation to pathogenesis. Taken together, the findings reported here suggest that the ncgRNAs contribute to alphaviral pathogenesis through the sensing of the ncgRNAs during alphaviral infection and are necessary for the development of severe disease.


Alphavirus Infections/virology , Gene Expression Regulation, Viral , Genome, Viral , RNA, Viral , Sindbis Virus/genetics , Alphavirus Infections/genetics , Alphavirus Infections/metabolism , Animals , Brain/metabolism , Brain/virology , Cell Line , Cell Survival , Cells, Cultured , Cytokines/genetics , Cytokines/metabolism , Disease Models, Animal , Disease Susceptibility , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Inflammation Mediators , Interferon Type I/metabolism , Mice , Neurons/virology , RNA Caps , Sindbis Virus/pathogenicity , Virulence , Virus Replication
15.
PLoS One ; 15(8): e0238254, 2020.
Article En | MEDLINE | ID: mdl-32841293

The identification of host / pathogen interactions is essential to both understanding the molecular biology of infection and developing rational intervention strategies to overcome disease. Alphaviruses, such as Sindbis virus, Chikungunya virus, and Venezuelan Equine Encephalitis virus are medically relevant positive-sense RNA viruses. As such, they must interface with the host machinery to complete their infectious lifecycles. Nonetheless, exhaustive RNA:Protein interaction discovery approaches have not been reported for any alphavirus species. Thus, the breadth and evolutionary conservation of host interactions on alphaviral RNA function remains a critical gap in the field. Herein we describe the application of the Cross-Link Assisted mRNP Purification (CLAMP) strategy to identify conserved alphaviral interactions. Through comparative analyses, conserved alphaviral host / pathogen interactions were identified. Approximately 100 unique host proteins were identified as a result of these analyses. Ontological assessments reveal enriched Molecular Functions and Biological Processes relevant to alphaviral infection. Specifically, as anticipated, Poly(A) RNA Binding proteins are significantly enriched in virus specific CLAMP data sets. Moreover, host proteins involved in the regulation of mRNA stability, proteasome mediated degradation, and a number of 14-3-3 proteins were identified. Importantly, these data expand the understanding of alphaviral host / pathogen interactions by identifying conserved interactants.


Alphavirus/genetics , Alphavirus/pathogenicity , Host Microbial Interactions/genetics , Host Microbial Interactions/physiology , Poly(A)-Binding Proteins/genetics , Poly(A)-Binding Proteins/metabolism , RNA, Viral/genetics , RNA, Viral/metabolism , Alphavirus/physiology , Animals , Cell Line , Chikungunya virus/genetics , Chikungunya virus/pathogenicity , Chikungunya virus/physiology , Encephalitis Virus, Venezuelan Equine/genetics , Encephalitis Virus, Venezuelan Equine/pathogenicity , Encephalitis Virus, Venezuelan Equine/physiology , Evolution, Molecular , HEK293 Cells , Humans , Protein Interaction Maps , Ribonucleoproteins/genetics , Ribonucleoproteins/isolation & purification , Ribonucleoproteins/metabolism , Sindbis Virus/genetics , Sindbis Virus/pathogenicity , Sindbis Virus/physiology , Species Specificity
16.
Otolaryngol Head Neck Surg ; 163(4): 682-694, 2020 10.
Article En | MEDLINE | ID: mdl-32660339

OBJECTIVE: To provide a state of the art review of intranasal antiviral drug delivery and to discuss current applications, adverse reactions, and future considerations in the management of coronavirus disease 2019 (COVID-19). DATA SOURCES: PubMed, Embase, and Clinicaltrials.gov search engines. REVIEW METHODS: A structured search of the current literature was performed of dates up to and including April 2020. Search terms were queried as related to topics of antiviral agents and intranasal applications. A series of video conferences was convened among experts in otolaryngology, infectious diseases, public health, pharmacology, and virology to review the literature and discuss relevant findings. CONCLUSIONS: Intranasal drug delivery for antiviral agents has been studied for many years. Several agents have broad-spectrum antiviral activity, but they still require human safety and efficacy trials prior to implementation. Intranasal drug delivery has potential relevance for future clinical trials in the settings of disease spread prevention and treatment of SARS-CoV-2 and other viral diseases. IMPLICATIONS FOR PRACTICE: Intranasal drug delivery represents an important area of research for COVID-19 and other viral diseases. The consideration of any potential adverse reactions is paramount.


Antiviral Agents/administration & dosage , Betacoronavirus , Coronavirus Infections/drug therapy , Pneumonia, Viral/drug therapy , Administration, Intranasal/methods , COVID-19 , Coronavirus Infections/epidemiology , Drug Delivery Systems , Humans , Pandemics , Pneumonia, Viral/epidemiology , SARS-CoV-2
17.
Vaccines (Basel) ; 8(1)2020 Mar 02.
Article En | MEDLINE | ID: mdl-32121666

The safety and genetic stability of V4020, a novel Venezuelan Equine Encephalitis Virus (VEEV) vaccine based on the investigational VEEV TC-83 strain, was evaluated in mice. V4020 was generated from infectious DNA, contains a stabilizing mutation in the E2-120 glycoprotein, and includes rearrangement of structural genes. After intracranial inoculation (IC), replication of V4020 was more attenuated than TC-83, as documented by low clinical scores, inflammation, viral load in brain, and earlier viral clearance. During the first 9 days post-inoculation (DPI), genes involved in inflammation, cytokine signaling, adaptive immune responses, and apoptosis were upregulated in both groups. However, the magnitude of upregulation was greater in TC-83 than V4020 mice, and this pattern persisted till 13 DPI, while V4020 gene expression profiles declined to mock-infected levels. In addition, genetic markers of macrophages, DCs, and microglia were strongly upregulated in TC-83 mice. During five serial passages in the brain, less severe clinical manifestations and a lower viral load were observed in V4020 mice and all animals survived. In contrast, 13.3% of mice met euthanasia criteria during the passages in TC-83 group. At 2 DPI, RNA-Seq analysis of brain tissues revealed that V4020 mice had lower rates of mutations throughout five passages. A higher synonymous mutation ratio was observed in the nsP4 (RdRP) gene of TC-83 compared to V4020 mice. At 2 DPI, both viruses induced different expression profiles of host genes involved in neuro-regeneration. Taken together, these results provide evidence for the improved safety and genetic stability of the experimental V4020 VEEV vaccine in a murine model.

18.
PLoS Pathog ; 16(3): e1008282, 2020 03.
Article En | MEDLINE | ID: mdl-32150585

Protein phosphorylation plays an important role during the life cycle of many viruses. Venezuelan equine encephalitis virus (VEEV) capsid protein has recently been shown to be phosphorylated at four residues. Here those studies are extended to determine the kinase responsible for phosphorylation and the importance of capsid phosphorylation during the viral life cycle. Phosphorylation site prediction software suggests that Protein Kinase C (PKC) is responsible for phosphorylation of VEEV capsid. VEEV capsid co-immunoprecipitated with PKCδ, but not other PKC isoforms and siRNA knockdown of PKCδ caused a decrease in viral replication. Furthermore, knockdown of PKCδ by siRNA decreased capsid phosphorylation. A virus with capsid phosphorylation sites mutated to alanine (VEEV CPD) displayed a lower genomic copy to pfu ratio than the parental virus; suggesting more efficient viral assembly and more infectious particles being released. RNA:capsid binding was significantly increased in the mutant virus, confirming these results. Finally, VEEV CPD is attenuated in a mouse model of infection, with mice showing increased survival and decreased clinical signs as compared to mice infected with the parental virus. Collectively our data support a model in which PKCδ mediated capsid phosphorylation regulates viral RNA binding and assembly, significantly impacting viral pathogenesis.


Capsid Proteins/metabolism , Encephalitis Virus, Venezuelan Equine/metabolism , Encephalomyelitis, Venezuelan Equine/enzymology , Protein Kinase C-delta/metabolism , RNA, Viral/metabolism , Animals , Capsid/metabolism , Capsid Proteins/genetics , Encephalitis Virus, Venezuelan Equine/genetics , Encephalomyelitis, Venezuelan Equine/genetics , Encephalomyelitis, Venezuelan Equine/virology , Female , Horses , Host-Pathogen Interactions , Mice , Mice, Inbred C3H , Phosphorylation , Protein Binding , Protein Kinase C-delta/genetics , RNA, Viral/genetics
19.
mBio ; 9(6)2018 12 11.
Article En | MEDLINE | ID: mdl-30538185

Alphaviruses are arthropod-borne RNA viruses that are capable of causing severe disease and are a significant burden to public health. Alphaviral replication results in the production of both capped and noncapped viral genomic RNAs (ncgRNAs), which are packaged into virions during infections of vertebrate and invertebrate cells. However, the roles that the ncgRNAs play during alphaviral infection have yet to be exhaustively characterized. Here, the importance of the ncgRNAs to alphaviral infection was assessed by using mutations of the nsP1 protein of Sindbis virus (SINV), which altered the synthesis of the ncgRNAs during infection by modulating the protein's capping efficiency. Specifically, point mutations at residues Y286A and N376A decreased capping efficiency whereas a point mutation at D355A increased the capping efficiency of the SINV genomic RNA during genuine viral infection. Viral growth kinetics levels were significantly reduced for the D355A mutant relative to wild-type infection, whereas the Y286A and N376A mutants showed modest decreases in growth kinetics. Overall genomic translation and nonstructural protein accumulation were found to correlate with increases and decreases in capping efficiency. However, genomic, minus-strand, and subgenomic viral RNA synthesis were largely unaffected by the modulation of alphaviral capping activity. In addition, translation of the subgenomic alphaviral RNA (vRNA) was found not to be impacted by changes in capping efficiency. The mechanism by which the decreased presence of ncgRNAs reduced viral growth kinetics levels operated through the impaired production of viral particles. Collectively, these data illustrate the importance of ncgRNAs to viral infection and suggest that they play an integral role in the production of viral progeny.IMPORTANCE Alphaviruses have been the cause of both localized outbreaks and large epidemics of severe disease. Currently, there are no strategies or vaccines which are either safe or effective for preventing alphaviral infection or treating alphaviral disease. This deficit of viable therapeutics highlights the need to better understand the mechanisms behind alphaviral infection in order to develop novel antiviral strategies for treatment of alphaviral disease. In particular, this report details a previously uncharacterized aspect of the alphaviral life cycle: the importance of noncapped genomic viral RNAs for alphaviral infection. This offers new insights into the mechanisms of alphaviral replication and the impact of the noncapped genomic RNAs on viral packaging.


Sindbis Virus/enzymology , Sindbis Virus/growth & development , Viral Nonstructural Proteins/metabolism , Amino Acid Substitution , Animals , Cell Line , Cricetinae , Mutant Proteins/genetics , Mutant Proteins/metabolism , Point Mutation , Protein Biosynthesis , RNA, Viral/metabolism , Sindbis Virus/genetics , Viral Nonstructural Proteins/genetics
20.
Viruses ; 10(5)2018 05 16.
Article En | MEDLINE | ID: mdl-29772674

Transmission of mosquito-borne viruses requires the efficient infection of both a permissive vertebrate host and a competent mosquito vector. The infectivity of Sindbis virus (SINV), the type species of the Alphavirus genus, is influenced by both the original and new host cell. We have shown that infection of vertebrate cells by SINV, chikungunya virus (CHIKV), and Ross River virus (RRV) produces two subpopulations of virus particles separable based on density. In contrast, a single population of viral particles is produced by mosquito cells. Previous studies demonstrated that the denser vertebrate-derived particles and the mosquito-derived particles contain components of the small subunit of the host cell ribosome, whereas the less dense vertebrate-derived particles do not. Infection of mice with RRV showed that both particle subpopulations are produced in an infected vertebrate, but in a tissue specific manner with serum containing only the less dense version of the virus particles. Previous infectivity studies using SINV particles have shown that the denser particles (SINVHeavy) and mosquito derived particles SINVC6/36 are significantly more infectious in vertebrate cells than the less dense vertebrate derived particles (SINVLight). The current study shows that SINVLight particles, initiate the infection of the mosquito midgut more efficiently than SINVHeavy particles and that this enhanced infectivity is associated with an exacerbated immune response to SINVLight infection in midgut tissues. The enhanced infection of SINVLight is specific to the midgut as intrathoracically injected virus do not exhibit the same fitness advantage. Together, our data indicate a biologically significant role for the SINVLight subpopulation in the efficient transmission from infected vertebrates to the mosquito vector.


Aedes/virology , Alphavirus/physiology , Gastrointestinal Tract/virology , Mosquito Vectors/virology , Aedes/immunology , Alphavirus/immunology , Animals , Cells, Cultured , Gastrointestinal Tract/immunology , Gene Expression Regulation , Host-Pathogen Interactions/immunology , Immunity, Innate/genetics , Mice , Mice, Inbred C57BL , Mosquito Vectors/immunology , RNA, Viral/genetics , Virus Replication
...