Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
J Mol Med (Berl) ; 102(4): 507-519, 2024 04.
Article in English | MEDLINE | ID: mdl-38349407

ABSTRACT

Acute leukemia continues to be a major cause of death from disease worldwide and current chemotherapeutic agents are associated with significant morbidity in survivors. While better and safer treatments for acute leukemia are urgently needed, standard drug development pipelines are lengthy and drug repurposing therefore provides a promising approach. Our previous evaluation of FDA-approved drugs for their antileukemic activity identified disulfiram, used for the treatment of alcoholism, as a candidate hit compound. This study assessed the biological effects of disulfiram on leukemia cells and evaluated its potential as a treatment strategy. We found that disulfiram inhibits the viability of a diverse panel of acute lymphoblastic and myeloid leukemia cell lines (n = 16) and patient-derived xenograft cells from patients with poor outcome and treatment-resistant disease (n = 15). The drug induced oxidative stress and apoptosis in leukemia cells within hours of treatment and was able to potentiate the effects of daunorubicin, etoposide, topotecan, cytarabine, and mitoxantrone chemotherapy. Upon combining disulfiram with auranofin, a drug approved for the treatment of rheumatoid arthritis that was previously shown to exert antileukemic effects, strong and consistent synergy was observed across a diverse panel of acute leukemia cell lines, the mechanism of which was based on enhanced ROS induction. Acute leukemia cells were more sensitive to the cytotoxic activity of disulfiram than solid cancer cell lines and non-malignant cells. While disulfiram is currently under investigation in clinical trials for solid cancers, this study provides evidence for the potential of disulfiram for acute leukemia treatment. KEY MESSAGES: Disulfiram induces rapid apoptosis in leukemia cells by boosting oxidative stress. Disulfiram inhibits leukemia cell growth more potently than solid cancer cell growth. Disulfiram can enhance the antileukemic efficacy of chemotherapies. Disulfiram strongly synergises with auranofin in killing acute leukemia cells by ROS induction. We propose testing of disulfiram in clinical trial for patients with acute leukemia.


Subject(s)
Disulfiram , Leukemia, Myeloid, Acute , Humans , Disulfiram/pharmacology , Disulfiram/therapeutic use , Reactive Oxygen Species/metabolism , Auranofin/pharmacology , Auranofin/therapeutic use , Cell Line, Tumor , Leukemia, Myeloid, Acute/metabolism
2.
Sci Transl Med ; 15(696): eabm1262, 2023 05 17.
Article in English | MEDLINE | ID: mdl-37196067

ABSTRACT

High-risk childhood leukemia has a poor prognosis because of treatment failure and toxic side effects of therapy. Drug encapsulation into liposomal nanocarriers has shown clinical success at improving biodistribution and tolerability of chemotherapy. However, enhancements in drug efficacy have been limited because of a lack of selectivity of the liposomal formulations for the cancer cells. Here, we report on the generation of bispecific antibodies (BsAbs) with dual binding to a leukemic cell receptor, such as CD19, CD20, CD22, or CD38, and methoxy polyethylene glycol (PEG) for the targeted delivery of PEGylated liposomal drugs to leukemia cells. This liposome targeting system follows a "mix-and-match" principle where BsAbs were selected on the specific receptors expressed on leukemia cells. BsAbs improved the targeting and cytotoxic activity of a clinically approved and low-toxic PEGylated liposomal formulation of doxorubicin (Caelyx) toward leukemia cell lines and patient-derived samples that are immunophenotypically heterogeneous and representative of high-risk subtypes of childhood leukemia. BsAb-assisted improvements in leukemia cell targeting and cytotoxic potency of Caelyx correlated with receptor expression and were minimally detrimental in vitro and in vivo toward expansion and functionality of normal peripheral blood mononuclear cells and hematopoietic progenitors. Targeted delivery of Caelyx using BsAbs further enhanced leukemia suppression while reducing drug accumulation in the heart and kidneys and extended overall survival in patient-derived xenograft models of high-risk childhood leukemia. Our methodology using BsAbs therefore represents an attractive targeting platform to potentiate the therapeutic efficacy and safety of liposomal drugs for improved treatment of high-risk leukemia.


Subject(s)
Antibodies, Bispecific , Antineoplastic Agents , Leukemia , Humans , Antibodies, Bispecific/therapeutic use , Tissue Distribution , Leukocytes, Mononuclear , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Antineoplastic Agents/therapeutic use , Polyethylene Glycols , Liposomes , Leukemia/drug therapy
3.
Front Oncol ; 12: 863329, 2022.
Article in English | MEDLINE | ID: mdl-35677155

ABSTRACT

Rearrangements of the Mixed Lineage Leukemia (MLL/KMT2A) gene are present in approximately 10% of acute leukemias and characteristically define disease with poor outcome. Driven by the unmet need to develop better therapies for KMT2A-rearranged leukemia, we previously discovered that the novel anti-cancer agent, curaxin CBL0137, induces decondensation of chromatin in cancer cells, delays leukemia progression and potentiates standard of care chemotherapies in preclinical KMT2A-rearranged leukemia models. Based on the promising potential of histone deacetylase (HDAC) inhibitors as targeted anti-cancer agents for KMT2A-rearranged leukemia and the fact that HDAC inhibitors also decondense chromatin via an alternate mechanism, we investigated whether CBL0137 could potentiate the efficacy of the HDAC inhibitor panobinostat in KMT2A-rearranged leukemia models. The combination of CBL0137 and panobinostat rapidly killed KMT2A-rearranged leukemia cells by apoptosis and significantly delayed leukemia progression and extended survival in an aggressive model of MLL-AF9 (KMT2A:MLLT3) driven murine acute myeloid leukemia. The drug combination also exerted a strong anti-leukemia response in a rapidly progressing xenograft model derived from an infant with KMT2A-rearranged acute lymphoblastic leukemia, significantly extending survival compared to either monotherapy. The therapeutic enhancement between CBL0137 and panobinostat in KMT2A-r leukemia cells does not appear to be mediated through cooperative effects of the drugs on KMT2A rearrangement-associated histone modifications. Our data has identified the CBL0137/panobinostat combination as a potential novel targeted therapeutic approach to improve outcome for KMT2A-rearranged leukemia.

4.
Clin Transl Med ; 12(6): e933, 2022 06.
Article in English | MEDLINE | ID: mdl-35730653

ABSTRACT

BACKGROUND: Improving the poor prognosis of infant leukaemias remains an unmet clinical need. This disease is a prototypical fusion oncoprotein-driven paediatric cancer, with MLL (KMT2A)-fusions present in most cases. Direct targeting of these driving oncoproteins represents a unique therapeutic opportunity. This rationale led us to initiate a drug screening with the aim of discovering drugs that can block MLL-fusion oncoproteins. METHODS: A screen for inhibition of MLL-fusion proteins was developed that overcomes the traditional limitations of targeting transcription factors. This luciferase reporter-based screen, together with a secondary western blot screen, was used to prioritize compounds. We characterized the lead compound, disulfiram (DSF), based on its efficient ablation of MLL-fusion proteins. The consequences of drug-induced MLL-fusion inhibition were confirmed by cell proliferation, colony formation, apoptosis assays, RT-qPCR, in vivo assays, RNA-seq and ChIP-qPCR and ChIP-seq analysis. All statistical tests were two-sided. RESULTS: Drug-induced inhibition of MLL-fusion proteins by DSF resulted in a specific block of colony formation in MLL-rearranged cells in vitro, induced differentiation and impeded leukaemia progression in vivo. Mechanistically, DSF abrogates MLL-fusion protein binding to DNA, resulting in epigenetic changes and down-regulation of leukaemic programmes setup by the MLL-fusion protein. CONCLUSION: DSF can directly inhibit MLL-fusion proteins and demonstrate antitumour activity both in vitro and in vivo, providing, to our knowledge, the first evidence for a therapy that directly targets the initiating oncogenic MLL-fusion protein.


Subject(s)
Leukemia , Oncogene Proteins, Fusion , Acute Disease , Apoptosis , Cell Proliferation , Child , Epigenesis, Genetic , Humans , Infant , Leukemia/genetics , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism
5.
Trends Cancer ; 7(8): 751-777, 2021 08.
Article in English | MEDLINE | ID: mdl-34183305

ABSTRACT

Despite the success of immunotherapies in adult solid cancers and pediatric hematological malignancies, limited progress has been made towards implementing these strategies in pediatric solid tumors. These tumors exhibit a high potential to escape antitumor immunity, making them difficult to target by current immunotherapies. This review highlights the altered metabolic pathways in pediatric solid tumors that promote immune escape, and discusses current novel strategies targeting these pathways. We further explore how these strategies could be applied to potentiate immunotherapies for pediatric solid cancers and pose key questions yet to be addressed. Translational challenges to facilitate clinical application of antimetabolic strategies through personalized medicine are identified. We propose preclinical testing of antimetabolic approaches in combination with immunotherapies for pediatric solid cancers.


Subject(s)
Antimetabolites, Antineoplastic/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Immune Checkpoint Inhibitors/therapeutic use , Immunotherapy/methods , Neoplasms/therapy , Age Factors , Animals , Antigens, Neoplasm/genetics , Antigens, Neoplasm/metabolism , Antimetabolites, Antineoplastic/pharmacology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Cell Line, Tumor , Child , Humans , Immune Checkpoint Inhibitors/pharmacology , Metabolic Networks and Pathways/drug effects , Metabolic Networks and Pathways/genetics , Metabolic Networks and Pathways/immunology , Mutation , Neoplasms/genetics , Neoplasms/immunology , Tumor Escape/drug effects , Tumor Escape/genetics , Tumor Microenvironment/drug effects , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology , Xenograft Model Antitumor Assays
6.
Clin Cancer Res ; 27(15): 4338-4352, 2021 08 01.
Article in English | MEDLINE | ID: mdl-33994371

ABSTRACT

PURPOSE: We investigated whether targeting chromatin stability through a combination of the curaxin CBL0137 with the histone deacetylase (HDAC) inhibitor, panobinostat, constitutes an effective multimodal treatment for high-risk neuroblastoma. EXPERIMENTAL DESIGN: The effects of the drug combination on cancer growth were examined in vitro and in animal models of MYCN-amplified neuroblastoma. The molecular mechanisms of action were analyzed by multiple techniques including whole transcriptome profiling, immune deconvolution analysis, immunofluorescence, flow cytometry, pulsed-field gel electrophoresis, assays to assess cell growth and apoptosis, and a range of cell-based reporter systems to examine histone eviction, heterochromatin transcription, and chromatin compaction. RESULTS: The combination of CBL0137 and panobinostat enhanced nucleosome destabilization, induced an IFN response, inhibited DNA damage repair, and synergistically suppressed cancer cell growth. Similar synergistic effects were observed when combining CBL0137 with other HDAC inhibitors. The CBL0137/panobinostat combination significantly delayed cancer progression in xenograft models of poor outcome high-risk neuroblastoma. Complete tumor regression was achieved in the transgenic Th-MYCN neuroblastoma model which was accompanied by induction of a type I IFN and immune response. Tumor transplantation experiments further confirmed that the presence of a competent adaptive immune system component allowed the exploitation of the full potential of the drug combination. CONCLUSIONS: The combination of CBL0137 and panobinostat is effective and well-tolerated in preclinical models of aggressive high-risk neuroblastoma, warranting further preclinical and clinical investigation in other pediatric cancers. On the basis of its potential to boost IFN and immune responses in cancer models, the drug combination holds promising potential for addition to immunotherapies.


Subject(s)
Carbazoles/administration & dosage , Carbazoles/pharmacology , Chromatin/drug effects , Histone Deacetylase Inhibitors/administration & dosage , Histone Deacetylase Inhibitors/pharmacology , Neuroblastoma/drug therapy , Panobinostat/administration & dosage , Panobinostat/pharmacology , Animals , Drug Combinations , Drug Evaluation, Preclinical , Mice , Tumor Cells, Cultured
7.
Br J Cancer ; 125(1): 55-64, 2021 07.
Article in English | MEDLINE | ID: mdl-33837299

ABSTRACT

BACKGROUND: The prognosis for high-risk childhood acute leukaemias remains dismal and established treatment protocols often cause long-term side effects in survivors. This study aims to identify more effective and safer therapeutics for these patients. METHODS: A high-throughput phenotypic screen of a library of 3707 approved drugs and pharmacologically active compounds was performed to identify compounds with selective cytotoxicity against leukaemia cells followed by further preclinical evaluation in patient-derived xenograft models. RESULTS: Auranofin, an FDA-approved agent for the treatment of rheumatoid arthritis, was identified as exerting selective anti-cancer activity against leukaemia cells, including patient-derived xenograft cells from children with high-risk ALL, versus solid tumour and non-cancerous cells. It induced apoptosis in leukaemia cells by increasing reactive oxygen species (ROS) and potentiated the activity of the chemotherapeutic cytarabine against highly aggressive models of infant MLL-rearranged ALL by enhancing DNA damage accumulation. The enhanced sensitivity of leukaemia cells towards auranofin was associated with lower basal levels of the antioxidant glutathione and higher baseline ROS levels compared to solid tumour cells. CONCLUSIONS: Our study highlights auranofin as a well-tolerated drug candidate for high-risk paediatric leukaemias that warrants further preclinical investigation for application in high-risk paediatric and adult acute leukaemias.


Subject(s)
Auranofin/administration & dosage , Cytarabine/administration & dosage , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Reactive Oxygen Species/metabolism , Animals , Auranofin/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Child , Cytarabine/pharmacology , Drug Screening Assays, Antitumor , Drug Synergism , Female , High-Throughput Screening Assays , Humans , Mice , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Small Molecule Libraries , Xenograft Model Antitumor Assays
8.
Sci Adv ; 7(13)2021 03.
Article in English | MEDLINE | ID: mdl-33771865

ABSTRACT

The therapeutic scope of antibody and nonantibody protein scaffolds is still prohibitively limited against intracellular drug targets. Here, we demonstrate that the Alphabody scaffold can be engineered into a cell-penetrating protein antagonist against induced myeloid leukemia cell differentiation protein MCL-1, an intracellular target in cancer, by grafting the critical B-cell lymphoma 2 homology 3 helix of MCL-1 onto the Alphabody and tagging the scaffold's termini with designed cell-penetration polypeptides. Introduction of an albumin-binding moiety extended the serum half-life of the engineered Alphabody to therapeutically relevant levels, and administration thereof in mouse tumor xenografts based on myeloma cell lines reduced tumor burden. Crystal structures of such a designed Alphabody in complex with MCL-1 and serum albumin provided the structural blueprint of the applied design principles. Collectively, we provide proof of concept for the use of Alphabodies against intracellular disease mediators, which, to date, have remained in the realm of small-molecule therapeutics.


Subject(s)
Neoplasms , Peptides , Animals , Apoptosis , Cell Line , Cell Line, Tumor , Drug Delivery Systems , Humans , Mice , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Peptides/chemistry
9.
Front Oncol ; 11: 779859, 2021.
Article in English | MEDLINE | ID: mdl-35127484

ABSTRACT

Patients whose leukemias harbor a rearrangement of the Mixed Lineage Leukemia (MLL/KMT2A) gene have a poor prognosis, especially when the disease strikes in infants. The poor clinical outcome linked to this aggressive disease and the detrimental treatment side-effects, particularly in children, warrant the urgent development of more effective and cancer-selective therapeutics. The aim of this study was to identify novel candidate compounds that selectively target KMT2A-rearranged (KMT2A-r) leukemia cells. A library containing 3707 approved drugs and pharmacologically active compounds was screened for differential activity against KMT2A-r leukemia cell lines versus KMT2A-wild type (KMT2A-wt) leukemia cell lines, solid tumor cells and non-malignant cells by cell-based viability assays. The screen yielded SID7969543, an inhibitor of transcription factor Nuclear Receptor Subfamily 5 Group A Member 1 (NR5A1), that limited the viability of 7 out of 11 KMT2A-r leukemia cell lines including 5 out of 7 lines derived from infants, without affecting KMT2A-wt leukemia cells, solid cancer lines, non-malignant cell lines, or peripheral blood mononuclear cells from healthy controls. The compound also significantly inhibited growth of leukemia cell lines with a CALM-AF10 translocation, which defines a highly aggressive leukemia subtype that shares common underlying leukemogenic mechanisms with KMT2A-r leukemia. SID7969543 decreased KMT2A-r leukemia cell viability by inducing caspase-dependent apoptosis within hours of treatment and demonstrated synergy with established chemotherapeutics used in the treatment of high-risk leukemia. Thus, SID7969543 represents a novel candidate agent with selective activity against CALM-AF10 translocated and KMT2A-r leukemias that warrants further investigation.

10.
Cancer Res ; 80(17): 3706-3718, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32651259

ABSTRACT

The ability of the N-MYC transcription factor to drive cancer progression is well demonstrated in neuroblastoma, the most common extracranial pediatric solid tumor, where MYCN amplification heralds a poor prognosis, with only 11% of high-risk patients surviving past 5 years. However, decades of attempts of direct inhibition of N-MYC or its paralogues has led to the conclusion that this protein is "undruggable." Therefore, targeting pathways upregulated by N-MYC signaling presents an alternative therapeutic approach. Here, we show that MYCN-amplified neuroblastomas are characterized by elevated rates of protein synthesis and that high expression of ABCE1, a translation factor directly upregulated by N-MYC, is itself a strong predictor of poor clinical outcome. Despite the potent ability of N-MYC in heightening protein synthesis and malignant characteristics in cancer cells, suppression of ABCE1 alone selectively negated this effect, returning the rate of translation to baseline levels and significantly reducing the growth, motility, and invasiveness of MYCN-amplified neuroblastoma cells and patient-derived xenograft tumors in vivo. The growth of nonmalignant cells or MYCN-nonamplified neuroblastoma cells remained unaffected by reduced ABCE1, supporting a therapeutic window associated with targeting ABCE1. Neuroblastoma cells with c-MYC overexpression also required ABCE1 to maintain cell proliferation and translation. Taken together, ABCE1-mediated translation constitutes a critical process in the progression of N-MYC-driven and c-MYC-driven cancers that warrants investigations into methods of its therapeutic inhibition. SIGNIFICANCE: These findings demonstrate that N-MYC-driven cancers are reliant on elevated rates of protein synthesis driven by heightened expression of ABCE1, a vulnerability that can be exploited through suppression of ABCE1.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Gene Expression Regulation, Neoplastic/genetics , N-Myc Proto-Oncogene Protein/genetics , Neuroblastoma/genetics , Neuroblastoma/pathology , ATP-Binding Cassette Transporters/genetics , Animals , Disease Progression , Heterografts , Humans , Mice , Mice, Nude , N-Myc Proto-Oncogene Protein/metabolism , Protein Biosynthesis , RNA, Messenger
11.
Int J Cancer ; 147(8): 2225-2238, 2020 10 15.
Article in English | MEDLINE | ID: mdl-32277480

ABSTRACT

Epithelial ovarian cancer (EOC) is a complex disease comprising discrete histological and molecular subtypes, for which survival rates remain unacceptably low. Tailored approaches for this deadly heterogeneous disease are urgently needed. Efflux pumps belonging to the ATP-binding cassette (ABC) family of transporters are known for roles in both drug resistance and cancer biology and are also highly targetable. Here we have investigated the association of ABCC4/MRP4 expression to clinical outcome and its biological function in endometrioid and serous tumors, common histological subtypes of EOC. We found high expression of ABCC4/MRP4, previously shown to be directly regulated by c-Myc/N-Myc, was associated with poor prognosis in endometrioid EOC (P = .001) as well as in a subset of serous EOC with a "high-MYCN" profile (C5/proliferative; P = .019). Transient siRNA-mediated suppression of MRP4 in EOC cells led to reduced growth, migration and invasion, with the effects being most pronounced in endometrioid and C5-like serous cells compared to non-C5 serous EOC cells. Sustained knockdown of MRP4 also sensitized endometrioid cells to MRP4 substrate drugs. Furthermore, suppression of MRP4 decreased the growth of patient-derived EOC cells in vivo. Together, our findings provide the first evidence that MRP4 plays an important role in the biology of Myc-associated ovarian tumors and highlight this transporter as a potential therapeutic target for EOC.


Subject(s)
Carcinoma, Ovarian Epithelial/genetics , Carcinoma, Ovarian Epithelial/pathology , Genes, myc/genetics , Multidrug Resistance-Associated Proteins/genetics , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Carcinoma, Endometrioid/genetics , Carcinoma, Endometrioid/pathology , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Cystadenocarcinoma, Serous/genetics , Cystadenocarcinoma, Serous/pathology , Drug Resistance, Neoplasm/genetics , Female , Gene Expression Regulation, Neoplastic/genetics , Humans , Prognosis , RNA, Small Interfering/genetics , Survival Rate
12.
Leukemia ; 34(7): 1828-1839, 2020 07.
Article in English | MEDLINE | ID: mdl-31896781

ABSTRACT

Effective treatment of some types of cancer can be achieved by modulating cell lineage-specific rather than tumor-specific targets. We conducted a systematic search for novel agents selectively toxic to cells of hematopoietic origin. Chemical library screenings followed by hit-to-lead optimization identified OT-82, a small molecule with strong efficacy against hematopoietic malignancies including acute myeloblastic and lymphoblastic adult and pediatric leukemias, erythroleukemia, multiple myeloma, and Burkitt's lymphoma in vitro and in mouse xenograft models. OT-82 was also more toxic towards patients-derived leukemic cells versus healthy bone marrow-derived hematopoietic precursors. OT-82 was shown to induce cell death by inhibiting nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme in the salvage pathway of NAD synthesis. In mice, optimization of OT-82 dosing and dietary niacin further expanded the compound's therapeutic index. In toxicological studies conducted in mice and nonhuman primates, OT-82 showed no cardiac, neurological or retinal toxicities observed with other NAMPT inhibitors and had no effect on mouse aging or longevity. Hematopoietic and lymphoid organs were identified as the primary targets for dose limiting toxicity of OT-82 in both species. These results reveal strong dependence of neoplastic cells of hematopoietic origin on NAMPT and introduce OT-82 as a promising candidate for the treatment of hematological malignancies.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Benzamides/chemistry , Benzamides/pharmacology , Cytokines/antagonists & inhibitors , Hematologic Neoplasms/drug therapy , NAD/metabolism , Niacin/pharmacology , Nicotinamide Phosphoribosyltransferase/antagonists & inhibitors , Pyrazoles/chemistry , Pyrazoles/pharmacology , Pyridines/chemistry , Pyridines/pharmacology , Animals , Apoptosis , Cell Proliferation , Female , Hematologic Neoplasms/metabolism , Hematologic Neoplasms/pathology , High-Throughput Screening Assays , Humans , Male , Mice , Mice, Inbred C57BL , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
13.
Int J Cancer ; 146(7): 1902-1916, 2020 04 01.
Article in English | MEDLINE | ID: mdl-31325323

ABSTRACT

Around 10% of acute leukemias harbor a rearrangement of the MLL/KMT2A gene, and the presence of this translocation results in a highly aggressive, therapy-resistant leukemia subtype with survival rates below 50%. There is a high unmet need to identify safer and more potent therapies for MLL-rearranged (MLL-r) leukemia that can be combined with established chemotherapeutics to decrease treatment-related toxicities. The curaxin, CBL0137, has demonstrated nongenotoxic anticancer and chemopotentiating effects in a number of preclinical cancer models and is currently in adult Phase I clinical trials for solid tumors and hematological malignancies. The aim of our study was to investigate whether CBL0137 has potential as a therapeutic and chemopotentiating compound in MLL-r leukemia through a comprehensive analysis of its efficacy in preclinical models of the disease. CBL0137 decreased the viability of a panel of MLL-r leukemia cell lines (n = 12) and xenograft cells derived from patients with MLL-r acute lymphoblastic leukemia (ALL, n = 3) in vitro with submicromolar IC50s. The small molecule drug was well-tolerated in vivo and significantly reduced leukemia burden in a subcutaneous MV4;11 MLL-r acute myeloid leukemia model and in patient-derived xenograft models of MLL-r ALL (n = 5). The in vivo efficacy of standard of care drugs used in remission induction for pediatric ALL was also potentiated by CBL0137. CBL0137 exerted its anticancer effect by trapping Facilitator of Chromatin Transcription (FACT) into chromatin, activating the p53 pathway and inducing an Interferon response. Our findings support further preclinical evaluation of CBL0137 as a new approach for the treatment of MLL-r leukemia.


Subject(s)
Antineoplastic Agents/pharmacology , Carbazoles/pharmacology , Gene Rearrangement , Histone-Lysine N-Methyltransferase/genetics , Myeloid-Lymphoid Leukemia Protein/genetics , Animals , Antineoplastic Agents/therapeutic use , Apoptosis/genetics , Carbazoles/therapeutic use , Cell Line, Tumor , DNA-Binding Proteins/genetics , Disease Models, Animal , Gene Expression Profiling , High Mobility Group Proteins/genetics , Humans , Kaplan-Meier Estimate , Leukemia, Biphenotypic, Acute/diagnosis , Leukemia, Biphenotypic, Acute/drug therapy , Leukemia, Biphenotypic, Acute/genetics , Leukemia, Biphenotypic, Acute/mortality , Mice , Signal Transduction/drug effects , Transcriptional Elongation Factors/genetics , Transcriptome , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Xenograft Model Antitumor Assays
14.
Leukemia ; 34(6): 1524-1539, 2020 06.
Article in English | MEDLINE | ID: mdl-31848452

ABSTRACT

The prognosis for children diagnosed with high-risk acute lymphoblastic leukemia (ALL) remains suboptimal, and more potent and less toxic treatments are urgently needed. We investigated the efficacy of a novel nicotinamide phosphoribosyltransferase inhibitor, OT-82, against a panel of patient-derived xenografts (PDXs) established from high-risk and poor outcome pediatric ALL cases. OT-82 was well-tolerated and demonstrated impressive single agent in vivo efficacy, achieving significant leukemia growth delay in 95% (20/21) and disease regression in 86% (18/21) of PDXs. In addition, OT-82 enhanced the efficacy of the established drugs cytarabine and dasatinib and, as a single agent, showed similar efficacy as an induction-type regimen combining three drugs used to treat pediatric ALL. OT-82 exerted its antileukemic action by depleting NAD+ and ATP, inhibiting the NAD+-requiring DNA damage repair enzyme PARP-1, increasing mitochondrial ROS levels and inducing DNA damage, culminating in apoptosis induction. OT-82 sensitivity was associated with the occurrence of mutations in major DNA damage response genes, while OT-82 resistance was characterized by high expression levels of CD38. In conclusion, our study provides evidence that OT-82, as a single agent, and in combination with established drugs, is a promising new therapeutic strategy for a broad spectrum of high-risk pediatric ALL for which improved therapies are urgently needed.


Subject(s)
Antineoplastic Agents/pharmacology , Cytokines/antagonists & inhibitors , Nicotinamide Phosphoribosyltransferase/antagonists & inhibitors , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Animals , Apoptosis/drug effects , Cell Survival/drug effects , Enzyme Inhibitors/pharmacology , Humans , Mice , Xenograft Model Antitumor Assays
15.
Oncogene ; 38(20): 3824-3842, 2019 05.
Article in English | MEDLINE | ID: mdl-30670779

ABSTRACT

Survival rates for pediatric patients suffering from mixed lineage leukemia (MLL)-rearranged leukemia remain below 50% and more targeted, less toxic therapies are urgently needed. A screening method optimized to discover cytotoxic compounds selective for MLL-rearranged leukemia identified CCI-006 as a novel inhibitor of MLL-rearranged and CALM-AF10 translocated leukemias that share common leukemogenic pathways. CCI-006 inhibited mitochondrial respiration and induced mitochondrial membrane depolarization and apoptosis in a subset (7/11, 64%) of MLL-rearranged leukemia cell lines within a few hours of treatment. The unresponsive MLL-rearranged leukemia cells did not undergo mitochondrial membrane depolarization or apoptosis despite a similar attenuation of mitochondrial respiration by the compound. In comparison to the sensitive cells, the unresponsive MLL-rearranged leukemia cells were characterized by a more glycolytic metabolic phenotype, exemplified by a more pronounced sensitivity to glycolysis inhibitors and elevated HIF1α expression. Silencing of HIF1α expression sensitized an intrinsically unresponsive MLL-rearranged leukemia cell to CCI-006, indicating that this pathway plays a role in determining sensitivity to the compound. In addition, unresponsive MLL-rearranged leukemia cells expressed increased levels of MEIS1, an important leukemogenic MLL target gene that plays a role in regulating metabolic phenotype through HIF1α. MEIS1 expression was also variable in a pediatric MLL-rearranged ALL patient dataset, highlighting the existence of a previously undescribed metabolic variability in MLL-rearranged leukemia that may contribute to the heterogeneity of the disease. This study thus identified a novel small molecule that rapidly kills MLL-rearranged leukemia cells by targeting a metabolic vulnerability in a subset of low HIF1α/low MEIS1-expressing MLL-rearranged leukemia cells.


Subject(s)
Acrylates/pharmacology , Antineoplastic Agents/pharmacology , Furans/pharmacology , Leukemia, Myeloid, Acute/drug therapy , Mitochondria/drug effects , Nitriles/pharmacology , Animals , Cell Line, Tumor , Drug Resistance, Neoplasm/drug effects , Gene Expression Regulation, Leukemic/drug effects , Gene Rearrangement , Histone-Lysine N-Methyltransferase/genetics , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Mice, Inbred Strains , Mitochondria/physiology , Myeloid Ecotropic Viral Integration Site 1 Protein/genetics , Myeloid-Lymphoid Leukemia Protein/genetics , Unfolded Protein Response/drug effects
16.
Oncotarget ; 7(29): 46067-46087, 2016 Jul 19.
Article in English | MEDLINE | ID: mdl-27317766

ABSTRACT

There is an urgent need for the development of less toxic, more selective and targeted therapies for infants with leukemia characterized by translocation of the mixed lineage leukemia (MLL) gene. In this study, we performed a cell-based small molecule library screen on an infant MLL-rearranged (MLL-r) cell line, PER-485, in order to identify selective inhibitors for MLL-r leukemia. After screening initial hits for a cytotoxic effect against a panel of 30 cell lines including MLL-r and MLL wild-type (MLL-wt) leukemia, solid tumours and control cells, small molecule CCI-007 was identified as a compound that selectively and significantly decreased the viability of a subset of MLL-r and related leukemia cell lines with CALM-AF10 and SET-NUP214 translocation. CCI-007 induced a rapid caspase-dependent apoptosis with mitochondrial depolarization within twenty-four hours of treatment. CCI-007 altered the characteristic MLL-r gene expression signature in sensitive cells with downregulation of the expression of HOXA9, MEIS1, CMYC and BCL2, important drivers in MLL-r leukemia, within a few hours of treatment. MLL-r leukemia cells that were resistant to the compound were characterised by significantly higher baseline gene expression levels of MEIS1 and BCL2 in comparison to CCI-007 sensitive MLL-r leukemia cells.In conclusion, we have identified CCI-007 as a novel small molecule that displays rapid toxicity towards a subset of MLL-r, CALM-AF10 and SET-NUP214 leukemia cell lines. Our findings suggest an important new avenue in the development of targeted therapies for these deadly diseases and indicate that different therapeutic strategies might be needed for different subtypes of MLL-r leukemia.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Screening Assays, Antitumor , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Apoptosis/drug effects , Cell Line, Tumor , DNA-Binding Proteins , Gene Expression/drug effects , Histone Chaperones/genetics , Humans , Infant , Myeloid-Lymphoid Leukemia Protein/genetics , Nuclear Pore Complex Proteins/genetics , Oncogene Proteins, Fusion/genetics , Transcription Factors/genetics
17.
Rheumatology (Oxford) ; 55(8): 1431-6, 2016 08.
Article in English | MEDLINE | ID: mdl-27094600

ABSTRACT

OBJECTIVES: Despite recent progress in biomarker discovery for RA diagnostics, still over one-third of RA patients-and even more in early disease-present without RF or ACPA. The aim of this study was to confirm the presence of previously identified autoantibodies to novel Hasselt University (UH) peptides in early and seronegative RA. METHODS: Screening for antibodies against novel UH peptides UH-RA.1, UH-RA.9, UH-RA.14 and UH-RA.21, was performed in two large independent cohorts. Peptide ELISAs were developed to screen for the presence of antibodies to UH-RA peptides. First, 292 RA patients (including 39 early patients), 90 rheumatic and 97 healthy controls from UH were studied. Antibody reactivity to two peptides (UH-RA.1 and UH-RA.21) was also evaluated in 600 RA patients, 309 patients with undifferentiated arthritis and 157 rheumatic controls from the Leiden Early Arthritis Clinic cohort. RESULTS: In both cohorts, 38% of RA patients were seronegative for RF and ACPA. Testing for autoantibodies to UH-RA.1 and UH-RA.21 reduced the serological gap from 38% to 29% in the UH cohort (P = 0.03) and from 38% to 32% in the Leiden Early Arthritis Clinic cohort (P = 0.01). Furthermore, 19-33% of early RA patients carried antibodies to these peptides. Specificities in rheumatic controls ranged from 82 to 96%. Whereas antibodies against UH-RA.1 were related to remission, anti-UH-RA.21 antibodies were associated with inflammation, joint erosion and higher tender and swollen joint counts. CONCLUSION: This study validates the presence of antibody reactivity to novel UH-RA peptides in seronegative and early RA. This might reinforce current diagnostics and improve early diagnosis and intervention in RA.


Subject(s)
Arthritis, Rheumatoid/diagnosis , Autoantibodies/metabolism , Peptides/immunology , Adult , Arthritis, Rheumatoid/immunology , Biomarkers/metabolism , Case-Control Studies , Early Diagnosis , Enzyme-Linked Immunosorbent Assay , Female , Humans , Male , Middle Aged , Peptides, Cyclic/metabolism , Prognosis , Rheumatoid Factor/metabolism
18.
Nat Commun ; 5: 5237, 2014 Oct 30.
Article in English | MEDLINE | ID: mdl-25354530

ABSTRACT

Protein scaffolds can provide a promising alternative to antibodies for various biomedical and biotechnological applications, including therapeutics. Here we describe the design and development of the Alphabody, a protein scaffold featuring a single-chain antiparallel triple-helix coiled-coil fold. We report affinity-matured Alphabodies with favourable physicochemical properties that can specifically neutralize human interleukin (IL)-23, a pivotal therapeutic target in autoimmune inflammatory diseases such as psoriasis and multiple sclerosis. The crystal structure of human IL-23 in complex with an affinity-matured Alphabody reveals how the variable interhelical groove of the scaffold uniquely targets a large epitope on the p19 subunit of IL-23 to harness fully the hydrophobic and hydrogen-bonding potential of tryptophan and tyrosine residues contributed by p19 and the Alphabody, respectively. Thus, Alphabodies are suitable for targeting protein-protein interfaces of therapeutic importance and can be tailored to interrogate desired design and binding-mode principles via efficient selection and affinity-maturation strategies.


Subject(s)
Interleukin-23/antagonists & inhibitors , Peptides/chemistry , Amino Acid Sequence , Animals , Cell Line , Drug Evaluation, Preclinical , Humans , Male , Mice , Mice, Inbred C57BL , Molecular Sequence Data , Peptides/therapeutic use , Psoriasis/prevention & control
19.
J Immunol ; 193(5): 2147-56, 2014 Sep 01.
Article in English | MEDLINE | ID: mdl-25086173

ABSTRACT

We have previously identified eight novel autoantibody targets in the cerebrospinal fluid of multiple sclerosis (MS) patients, including sperm-associated Ag 16 (SPAG16). In the current study, we further investigated the autoantibody response against SPAG16-a protein with unknown function in the CNS-and its expression in MS pathology. Using isoelectric focusing, we detected SPAG16-specific oligoclonal bands in the cerebrospinal fluid of 5 of 23 MS patients (22%). Analysis of the anti-SPAG16 Ab reactivity in the plasma of a total of 531 donors using ELISA demonstrated significantly elevated anti-SPAG16 Ab levels (p = 0.002) in 32 of 153 MS patients (21%) compared with all other control groups with 95% specificity for the disease. To investigate the pathologic relevance of anti-SPAG16 Abs in vivo, anti-SPAG16 Abs were injected in mice with experimental autoimmune encephalomyelitis, resulting in a significant disease exacerbation. Finally, we demonstrated a consistent upregulation of SPAG16 in MS brain and experimental autoimmune encephalomyelitis spinal cord lesions, more specifically in reactive astrocytes. We conclude that SPAG16 is a novel autoantibody target in a subgroup of MS patients and in combination with other diagnostic criteria, elevated levels of anti-SPAG16 Abs could be used as a biomarker for diagnosis. Furthermore, the pathologic relevance of anti-SPAG16 Abs was shown in vivo.


Subject(s)
Antibody Specificity , Autoantibodies/immunology , Microtubule-Associated Proteins/immunology , Multiple Sclerosis/immunology , Adult , Animals , Autoantibodies/blood , Biomarkers/blood , Brain/immunology , Brain/metabolism , Brain/pathology , Encephalomyelitis, Autoimmune, Experimental/blood , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Enzyme-Linked Immunosorbent Assay , Female , Humans , Isoelectric Focusing , Male , Mice , Microtubule-Associated Proteins/blood , Middle Aged , Multiple Sclerosis/blood , Multiple Sclerosis/diagnosis , Multiple Sclerosis/pathology , Up-Regulation/immunology
20.
Appl Microbiol Biotechnol ; 98(14): 6365-73, 2014.
Article in English | MEDLINE | ID: mdl-24764015

ABSTRACT

M13 filamentous bacteriophage has been used in displaying disease-specific antibodies, biomarkers, and peptides. One of the major drawbacks of using phage in diagnostic assays is the aspecific adsorption of proteins leading to a high background signal and decreasing sensitivity. To deal with this, we developed a genetically pure, exchangeable dual-display phage system in which biomarkers and streptavidin-binding protein (SBP) are displayed at opposite ends of the phage. This approach allows for sample purification, using streptavidin-coated magnetic beads resulting in a higher sensitivity of signal detection assays. Our dual-display cassette system approach also allows for easy exchange of both the anchor protein (SBP) and the displayed biomarker. The presented principle is applied for the detection of antibody reactivity against UH-RA.21 which is a good candidate biomarker for rheumatoid arthritis (RA). The applicability of dual-display phage preparation using a helper plasmid system is demonstrated, and its increased sensitivity in phage ELISA assays using patient serum samples is shown.


Subject(s)
Autoantibodies/blood , Cell Surface Display Techniques/methods , Inovirus/genetics , Mass Screening/methods , Serum/immunology , Enzyme-Linked Immunosorbent Assay/methods , Humans , Plasmids , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL