Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 19166, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39160245

ABSTRACT

With the global land use/land cover (LULC) and climate change, the ecological resilience (ER) in typical Karst areas has become the focus of attention. Its future development trend and its spatial response to natural and anthropogenic factors are crucial for understanding the changes of ecologically fragile areas to human behavior. However, there is still a lack of relevant quantitative research. The study systematically analyzed the characteristics of LULC changes in Southwest China with typical Karst over the past 20 years. Drawing on the landscape ecology research paradigm, a potential-elasticity-stability ER assessment model was constructed. Revealing the characteristics and heterogeneity of the spatial distribution, annual evolution, and development trend of ER in the past and under different scenarios of shared socioeconomic pathways and representative concentration pathways (SSP-RCP) in the future. In addition, the spatial econometric model was utilized to reveal the spatial effect response mechanism of ER, and adaptive development strategies were proposed to promote the sustainable development of Southwest China. The study found that : (1) In the past 20 years, the LULC in Southwest China showed an accelerated change trend, the ER decreased declined in general, and there was significant spatial heterogeneity, showing the spatial distribution pattern of "west is larger than east, south is larger than north, and reduction in the west was slower than that in the east." (2) Under the same SSP scenario, with the increase of RCP emission concentration, the area of the lowest-resilience increased significantly, and the area of the highest-resilience decreased. (3) The woodland was the largest contributor to ER per unit area in the Southwest China, and grassland was the main LULC type, which had a prominent impact on the ER of the study area. (4) The average precipitation and the normalized difference vegetation index (NDVI) were significant natural drivers of ER in the study area, and the economic growth, innovation, and optimization of industrial structure contributed to the ER of Southwest China. Overall, the integration of quantitative assessment and multi-scenario-based modeling not only provides new perspectives for understanding the pattern of change and response mechanisms, but also provides valuable references for other typical Karst regions around the world to achieve sustainable development.

2.
Infect Drug Resist ; 17: 2625-2639, 2024.
Article in English | MEDLINE | ID: mdl-38947371

ABSTRACT

Background: The emergence of carbapenem-resistant Klebsiella pneumoniae (CRKP) has garnered international concern due to its significant antibiotic resistance. Notably, children exhibit distinct resistance mechanisms compared to adults, necessitating a differential approach to antibiotic selection. A thorough analysis of CRKP's epidemiology and drug resistance mechanisms is essential for establishing a robust foundation for clinical anti-infection strategies and precise prevention and control measures. Methods: This study involved the collection of 31 non-repetitive strains from pediatric and adult patients at a tertiary hospital in China, spanning from July 2016 to July 2022, testing for resistance genes, antimicrobial susceptibility, and homology analysis. Results: Infants (0-1 year) were the largest pediatric CRKP group, with 61.3% of cases. The neonatal intensive care unit (NICU) and pediatrics were the main departments affected. Adults with CRKP had a mean age of 67 years, with the highest prevalence in neurology and emergency ICU. Antimicrobial susceptibility testing revealed that adult CRKP strains exhibited higher resistance to amikacin, ciprofloxacin, cotrimoxazole, and aztreonam compared to pediatric strains. Conversely, pediatric strains showed a higher rate of resistance to ceftazidime/avibactam. The predominant resistance genes identified were bla NDM-5 in children (58.1%) and bla KPC-2 in adults (87.1%), with over 93% of both groups testing positive for extended-spectrum beta-lactamase (ESBL) genes. Multilocus Sequence Typing (MLST) indicated ST2735 and ST11 as the predominant types in children and adults, respectively. Pulsed-field gel electrophoresis (PFGE) identified clonal transmission patterns of ST11 bla KPC-2 and ST15 bla OXA-232 across both age groups. Notably, this study reports the first instance of ST1114-type CRKP co-producing bla NDM-5 and bla OXA-181 in the NICU. Conclusion: This study reveals distinct resistance mechanisms and epidemiology in CRKP from children and adults. The identified clonal transmission patterns emphasize the need for improved infection control to prevent the spread of resistant strains.

3.
Macromol Rapid Commun ; : e2400337, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39018478

ABSTRACT

Designing heat-resistant thermosets with excellent comprehensive performance has been a long-standing challenge. Co-curing of various high-performance thermosets is an effective strategy, however, the traditional trial-and-error experiments have long research cycles for discovering new materials. Herein, a two-step machine learning (ML) assisted approach is proposed to design heat-resistant co-cured resins composed of polyimide (PI) and silicon-containing arylacetylene (PSA), that is, poly(silicon-alkyne imide) (PSI). First, two ML prediction models are established to evaluate the processability of PIs and their compatibility with PSA. Then, another two ML models are developed to predict the thermal decomposition temperature and flexural strength of the co-cured PSI resins. The optimal molecular structures and compositions of PSI resins are high-throughput screened. The screened PSI resins are experimentally verified to exhibit enhanced heat resistance, toughness, and processability. The research framework established in this work can be generalized to the rational design of other advanced multi-component polymeric materials.

4.
Article in English | MEDLINE | ID: mdl-38963740

ABSTRACT

This paper proposed an event-driven clockless level-crossing ADC (LC-ADC) suitable for biomedical applications. Thanks to the LC loop, the sampling rate of the converter automatically adapts to the input activities. Activity-dependent power consumption and data compression can thus be realized, saving system power, especially during time-sparse signal acquisition. Meanwhile, a SAR-assisted loop is exploited to resolve the loop-delay-induced distortion in conventional LC-ADC. Therefore, the resolution and power efficiency of the LC-ADC are improved effectively while maintaining the event-driven feature. Implemented in a 55nm process, the proposed LC-ADC achieves a scalable power consumption and a peak SNDR of 62.2dB for a 20kHz input. It also achieves a Walden FoM of 29.7fJ/conv.-step and a Schreier FoM of 158.6dB, which is best in class, without using off-chip calibration. Sub µW power is realized when the input frequency is below 1.5kHz. The proposed LC-ADC is also verified by simulated electrocardiogram (ECG), neural spike, and electromyogram (EMG) signals. It provides a ~7X data compression for ECG input, providing an attractive solution for time-sparse signal acquisition in biomedical applications.

5.
World J Clin Cases ; 12(18): 3453-3460, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38983421

ABSTRACT

BACKGROUND: This study adopts a descriptive phenomenological approach to investigate the facilitators and barriers of community nurses' abilities in managing critical and emergency conditions. With the transition of healthcare systems to the community, the evolution of nursing practices, and the attention from policies and practices, community nurses play a crucial role in the management of critical and emergency conditions. However, there is still a lack of comprehensive understanding regarding the factors that promote or hinder their capabilities in this area. AIM: To understand the facilitators and barriers of community nurses in managing critical and emergency conditions, exploring the fundamental reasons and driving forces influencing their treatment capabilities. METHODS: This study utilized the destination sampling method between May 2023 and July 2023. It employed a descriptive phenomenological approach within qualitative research methodologies. Through objective sampling, 17 community nurses from 7 communities in Changning District, Shanghai, were selected as the study subjects. Semi-structured interviews were conducted to gather data, which were subsequently organized and analyzed using Colaizzi's seven-step analysis method, leading to the extraction of final themes. RESULTS: The barrier factors identified from the interviews encompassed three topics: resource allocation, professional factors, and personal literacy. The facilitators comprised three themes: professionalism, management attention, and training and continuing education. We identified that the root causes of the barriers included the lack of practical treatment experience among community nurses, insufficient awareness of self-directed learning, and limited knowledge and technical proficiency. The professional quality of community nurses and management attention serve as motivation for them to enhance their treatment abilities. CONCLUSION: To enhance the capability of community nurses in treating acute and critical patients, it is recommended to bolster training specifically tailored to acute and critical care, raise awareness of first aid practices, and elevate knowledge and skill levels.

6.
Nat Commun ; 15(1): 5769, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982044

ABSTRACT

TWAS have shown great promise in extending GWAS loci to a functional understanding of disease mechanisms. In an effort to fully unleash the TWAS and GWAS information, we propose MTWAS, a statistical framework that partitions and aggregates cross-tissue and tissue-specific genetic effects in identifying gene-trait associations. We introduce a non-parametric imputation strategy to augment the inaccessible tissues, accommodating complex interactions and non-linear expression data structures across various tissues. We further classify eQTLs into cross-tissue eQTLs and tissue-specific eQTLs via a stepwise procedure based on the extended Bayesian information criterion, which is consistent under high-dimensional settings. We show that MTWAS significantly improves the prediction accuracy across all 47 tissues of the GTEx dataset, compared with other single-tissue and multi-tissue methods, such as PrediXcan, TIGAR, and UTMOST. Applying MTWAS to the DICE and OneK1K datasets with bulk and single-cell RNA sequencing data on immune cell types showcases consistent improvements in prediction accuracy. MTWAS also identifies more predictable genes, and the improvement can be replicated with independent studies. We apply MTWAS to 84 UK Biobank GWAS studies, which provides insights into disease etiology.


Subject(s)
Bayes Theorem , Genome-Wide Association Study , Organ Specificity , Quantitative Trait Loci , Humans , Quantitative Trait Loci/genetics , Organ Specificity/genetics , Polymorphism, Single Nucleotide
7.
Chemosphere ; 363: 142839, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39019181

ABSTRACT

The compound 1,2-dichloroethane (1,2-DCA), a persistent and ubiquitous pollutant, is often found in groundwater and can strongly affect the ecological environment. However, the extreme bio-impedance of C-Cl bonds means that a high energy input is needed to drive biological dechlorination. Biotechnology techniques based on microbial photoelectrochemical cell (MPEC) could potentially convert solar energy into electricity and significantly reduce the external energy inputs currently needed to treat 1,2-DCA. However, low electricity-generating efficiency at the anode and sluggish bioreaction kinetics at the cathode limit the application of MPEC. In this study, a g-C3N4/Blue TiO2-NTA photoanode was fabricated and incorporated into an MPEC for 1,2-DCA removal. Optimal performance was achieved when Blue TiO2 nanotube arrays (Blue TiO2-NTA) were loaded with graphitic carbon nitride (g-C3N4) 10 times. The photocurrent density of the g-C3N4/Blue TiO2-NTA composite electrode was 2.48-fold higher than that of the pure Blue TiO2-NTA electrode under light irradiation. Furthermore, the MPEC equipped with g-C3N4/Blue TiO2-NTA improved 1,2-DCA removal efficiency by 45.21% compared to the Blue TiO2-NTA alone, which is comparable to that of a microbial electrolysis cell. In the modified MPEC, the current efficiency reached 69.07% when the light intensity was 150 mW cm-2 and the 1,2-DCA concentration was 4.4 mM. The excellent performance of the novel MPEC was attributed to the efficient direct electron transfer process and the abundant dechlorinators and electroactive bacteria. These results provide a sustainable and cost-effective strategy to improve 1,2-DCA treatment using a biocathode driven by a photoanode.


Subject(s)
Electrodes , Ethylene Dichlorides , Nanotubes , Titanium , Water Pollutants, Chemical , Titanium/chemistry , Nanotubes/chemistry , Ethylene Dichlorides/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/metabolism , Graphite/chemistry , Nitriles/chemistry , Nitrogen Compounds/chemistry , Bioelectric Energy Sources , Electrochemical Techniques/methods
8.
Transl Vis Sci Technol ; 13(7): 20, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39078643

ABSTRACT

Purpose: To examine the effects of serum growth hormone (GH) and insulin-like growth factor-1 (IGF-1) on choroidal structures with different blood glucose levels in patients with diabetes mellitus (DM) with acromegaly without diabetic retinopathy. Methods: Eighty-eight eyes of 44 patients with acromegaly were divided into a nondiabetic group (23 patients, 46 eyes) and a diabetic group (21 patients, 42 eyes). Forty-four age- and sex-matched healthy controls and 21 patients with type 2 DM without diabetic retinopathy were also included. Linear regression models with a simple slope analysis were used to identify the correlation and interaction between endocrine parameters and choroidal thickness (ChT), total choroidal area (TCA), luminal area (LA), stromal area (SA), and choroidal vascular index (CVI). Results: Our study revealed significant increases in the ChT, LA, SA, and TCA in patients with acromegaly compared with healthy controls, with no difference in the CVI. Comparatively, patients with DM with acromegaly had greater ChT than matched patients with type 2 DM, with no significant differences in other choroidal parameters. The enhancement of SA, LA and TCA caused by an acromegalic status disappeared in patients with diabetic status, whereas ChT and CVI were not affected by the interaction. In the diabetic acromegaly, higher IGF-1 (P = 0.006) and GH levels (P = 0.049), longer DM duration (P = 0.007), lower blood glucose (P = 0.001), and the interaction between GH and blood glucose were associated independently with thicker ChT. Higher GH levels (P = 0.016, 0.004 and 0.007), longer DM duration (P = 0.022, 0.013 and 0.013), lower blood glucose (P = 0.034, 0.011 and 0.01), and the interaction of IGF-1 and blood glucose were associated independently with larger SA, LA, and TCA. As blood glucose levels increased, the positive correlation between serum GH level and ChT diminished, and became insignificant when blood glucose was more than 7.35 mM/L. The associations between serum IGF-1 levels and LA, SA, and TCA became increasingly negative, with LA, becoming significantly and negatively associated to the GH levels only when blood glucose levels were more than 8.59 mM/L. Conclusions: Acromegaly-related choroidal enhancements diminish in the presence of DM. In diabetic acromegaly, blood glucose levels are linked negatively with changes in choroidal metrics and their association with GH and IGF-1. Translational Relevance: We revealed the potential beneficial impacts of IGF-1 and GH on structural measures of the choroid in patients with DM at relatively well-controlled blood glucose level, which could provide a potential treatment target for diabetic retinopathy.


Subject(s)
Acromegaly , Blood Glucose , Choroid , Diabetes Mellitus, Type 2 , Diabetic Retinopathy , Insulin-Like Growth Factor I , Humans , Insulin-Like Growth Factor I/metabolism , Insulin-Like Growth Factor I/analysis , Acromegaly/blood , Acromegaly/complications , Female , Male , Middle Aged , Choroid/pathology , Blood Glucose/analysis , Blood Glucose/metabolism , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/complications , Diabetic Retinopathy/blood , Adult , Aged , Tomography, Optical Coherence , Human Growth Hormone/blood , Case-Control Studies
9.
Environ Sci Technol ; 58(28): 12664-12673, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38953777

ABSTRACT

Investigating the fate of persistent organic pollutants in water distribution systems (WDSs) is of great significance for preventing human health risks. The role of iron corrosion scales in the migration and transformation of organics in such systems remains unclear. Herein, we determined that hydroxyl (•OH), chlorine, and chlorine oxide radicals are generated by Fenton-like reactions due to the coexistence of oxygen vacancy-related Fe(II) on goethite (a major constituent of iron corrosion scales) and hypochlorous acid (HClO, the main reactive chlorine species of residual chlorine at pH ∼ 7.0). •OH contributed mostly to the decomposition of atrazine (ATZ, model compound) more than other radicals, producing a series of relatively low-toxicity small molecular intermediates. A simplified kinetic model consisting of mass transfer of ATZ and HClO, •OH generation, and ATZ oxidation by •OH on the goethite surface was developed to simulate iron corrosion scale-triggered residual chlorine oxidation of organic compounds in a WDS. The model was validated by comparing the fitting results to the experimental data. Moreover, the model was comprehensively applicable to cases in which various inorganic ions (Ca2+, Na+, HCO3-, and SO42-) and natural organic matter were present. With further optimization, the model may be employed to predict the migration and accumulation of persistent organic pollutants under real environmental conditions in the WDSs.


Subject(s)
Water Pollutants, Chemical , Kinetics , Free Radicals/chemistry , Water Pollutants, Chemical/chemistry , Oxidation-Reduction , Iron/chemistry , Iron Compounds/chemistry , Minerals/chemistry
10.
Nat Commun ; 15(1): 6462, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39085232

ABSTRACT

Epithelial ovarian cancer (EOC) is a deadly disease with limited diagnostic biomarkers and therapeutic targets. Here we conduct a comprehensive proteomic profiling of ovarian tissue and plasma samples from 813 patients with different histotypes and therapeutic regimens, covering the expression of 10,715 proteins. We identify eight proteins associated with tumor malignancy in the tissue specimens, which are further validated as potential circulating biomarkers in plasma. Targeted proteomics assays are developed for 12 tissue proteins and 7 blood proteins, and machine learning models are constructed to predict one-year recurrence, which are validated in an independent cohort. These findings contribute to the understanding of EOC pathogenesis and provide potential biomarkers for early detection and monitoring of the disease. Additionally, by integrating mutation analysis with proteomic data, we identify multiple proteins related to DNA damage in recurrent resistant tumors, shedding light on the molecular mechanisms underlying treatment resistance. This study provides a multi-histotype proteomic landscape of EOC, advancing our knowledge for improved diagnosis and treatment strategies.


Subject(s)
Carcinoma, Ovarian Epithelial , Proteins , Proteome , Carcinoma, Ovarian Epithelial/diagnosis , Carcinoma, Ovarian Epithelial/genetics , Carcinoma, Ovarian Epithelial/pathology , Biomarkers, Tumor/blood , Machine Learning , Mutation , Humans , Female , Adult , Middle Aged , Prognosis , DNA Repair/genetics , Proteins/genetics , Proteins/metabolism , China
11.
J Environ Manage ; 366: 121747, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38991345

ABSTRACT

Megacities face significant pollution challenges, particularly the elevated levels of heavy metals (HMs) in particulate matter (PM). Despite the advent of interdisciplinary and advanced methods for HM source analysis, integrating and applying these approaches to identify HM sources in PM remains a hurdle. This study employs a year-long daily sampling dataset for PM1 and PM1-10 to examine the patterns of HM concentrations under hazy, clean, and rainy conditions in Hangzhou City, aiming to pinpoint the primary sources of HMs in PM. Contrary to other HMs that remained within acceptable limits, the annual average concentrations of Cd and Ni were found to be 20.6 ± 13.6 and 46.9 ± 34.8 ng/m³, respectively, surpassing the World Health Organization's limits by 4.1 and 1.9 times. Remarkably, Cd levels decreased on hazy days, whereas Ni levels were observed to rise on rainy days. Using principal component analysis (PCA), enrichment factor (EF), and backward trajectory analysis, Fe, Mn, Cu, and Zn were determined to be primarily derived from traffic emissions, and there was an interaction between remote migration and local emissions in haze weather. Isotope analysis reveals that Pb concentrations in the Hangzhou region were primarily influenced by emissions from unleaded gasoline, coal combustion, and municipal solid waste incineration, with additional impact from long-range transport; it also highlights nuanced differences between PM1 and PM1-10. Pb isotope and PCA analyses indicate that Ni primarily stemmed from waste incineration emissions. This explanation accounts for the observed higher Ni concentrations on rainy days. Backward trajectory cluster analysis revealed that southern airflows were the primary source of high Cd concentrations on clean days in Hangzhou City. This study employs a multifaceted approach and cross-validation to successfully delineate the sources of HMs in Hangzhou's PM. It offers a methodology for the precise and reliable analysis of complex HM sources in megacity PM.


Subject(s)
Air Pollutants , Environmental Monitoring , Metals, Heavy , Particulate Matter , Particulate Matter/analysis , Metals, Heavy/analysis , Air Pollutants/analysis , China , Vehicle Emissions/analysis
12.
J Environ Manage ; 366: 121807, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39025011

ABSTRACT

The removal of various pollutants from water is necessary due to the increasing requirements for the removal of various pollutants from wastewater and the quality of drinking water. Polymer microspheres are regarded as exemplary adsorbent materials due to their high adsorption efficiency, excellent adsorption performance, and ease of handling. Herein, the advantages and disadvantages of different preparation methods, modifications, applications and the current research status of polymer microspheres are summarized at large. Furthermore, the enhanced performance of modified composite microspheres is emphasized, including adsorption efficiency, thermal stability, and significant improvements in physical and chemical properties. Subsequently, the current applications and potential of polymeric microspheres for wastewater treatment, including the removal of inorganic and organic pollutants, heavy metal ions, and other contaminants are summarized. Finally, future research directions for polymer microspheres are proposed, outlining the challenges and solutions associated with the application of polymer microspheres in wastewater treatment.


Subject(s)
Microspheres , Polymers , Wastewater , Water Pollutants, Chemical , Water Purification , Polymers/chemistry , Wastewater/chemistry , Water Purification/methods , Adsorption , Water Pollutants, Chemical/chemistry , Metals, Heavy/chemistry , Waste Disposal, Fluid/methods
13.
Front Microbiol ; 15: 1428304, 2024.
Article in English | MEDLINE | ID: mdl-39077742

ABSTRACT

Bloodstream infections (BSIs) are a critical medical concern, characterized by elevated morbidity, mortality, extended hospital stays, substantial healthcare costs, and diagnostic challenges. The clinical outcomes for patients with BSI can be markedly improved through the prompt identification of the causative pathogens and their susceptibility to antibiotics and antimicrobial agents. Traditional BSI diagnosis via blood culture is often hindered by its lengthy incubation period and its limitations in detecting pathogenic bacteria and their resistance profiles. Surface-enhanced Raman scattering (SERS) has recently gained prominence as a rapid and effective technique for identifying pathogenic bacteria and assessing drug resistance. This method offers molecular fingerprinting with benefits such as rapidity, sensitivity, and non-destructiveness. The objective of this study was to integrate deep learning (DL) with SERS for the rapid identification of common pathogens and their resistance to drugs in BSIs. To assess the feasibility of combining DL with SERS for direct detection, erythrocyte lysis and differential centrifugation were employed to isolate bacteria from blood samples with positive blood cultures. A total of 12,046 and 11,968 SERS spectra were collected from the two methods using Raman spectroscopy and subsequently analyzed using DL algorithms. The findings reveal that convolutional neural networks (CNNs) exhibit considerable potential in identifying prevalent pathogens and their drug-resistant strains. The differential centrifugation technique outperformed erythrocyte lysis in bacterial isolation from blood, achieving a detection accuracy of 98.68% for pathogenic bacteria and an impressive 99.85% accuracy in identifying carbapenem-resistant Klebsiella pneumoniae. In summary, this research successfully developed an innovative approach by combining DL with SERS for the swift identification of pathogenic bacteria and their drug resistance in BSIs. This novel method holds the promise of significantly improving patient prognoses and optimizing healthcare efficiency. Its potential impact could be profound, potentially transforming the diagnostic and therapeutic landscape of BSIs.

14.
Carbohydr Polym ; 342: 122435, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39048209

ABSTRACT

Increasing studies focus on depolymerization of chondroitin sulfate (CS) to enhance its biological activities. In the present study, low-molecular-weight chondroitin sulfate (LMWCS)­iron complexes were obtained by photocatalysis-Fenton reaction. After degradation with the optimal condition of 0.25 % (w/v) TiO2, 10 mM FeSO4, and 400 mM H2O2 for 0, 15, and 60 min, the average relative molecular weights of CS were reduced to 4.77, 2.47, and 1.21 kDa, respectively. Electron paramagnetic resonance and free radical capture test identified •OH, •O2-, and h+ in the photocatalysis-Fenton system, among them h+ was the major contributor for CS degradation. The structures of degradation products were analyzed by UV, CD, XRD, SEM-EDS, and NMR, and the results indicated that CS chelated iron with its carboxyl and sulfate groups, leading to changes in conformation and microtopography. Then 10 oligosaccharides were identified in the degradation products using HPLC-MSn and the depolymerization mechanism was proposed. Furthermore, iron release was observed in simulated gastrointestinal digestion of LMWCS­iron complexes. Notably, the everted gut sac experiment demonstrated that LMWCS­iron complex possessed 3.75 times higher iron absorption than FeSO4 (p < 0.01) and 12.60 times higher CS absorption than original CS (p < 0.0001). In addition, LMWCS­iron exhibited stronger in vitro antioxidant activity than CS.


Subject(s)
Chondroitin Sulfates , Hydrogen Peroxide , Iron , Molecular Weight , Titanium , Chondroitin Sulfates/chemistry , Hydrogen Peroxide/chemistry , Iron/chemistry , Catalysis , Titanium/chemistry , Biological Availability , Animals , Photochemical Processes
15.
Carbohydr Polym ; 340: 122285, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38858002

ABSTRACT

Although many preparation methods have been reported so far, it is still a great challenge for intelligent packaging films with both excellent mechanical properties and very high sensitivity. Herein, we report a facile method to prepare performance-enhanced pectin (PC)/carboxymethyl cellulose sodium (CMC)/anthocyanins (ACNs)/metal ion films by crosslinking with metal ions (Zn2+, Mg2+ and Ca2+). Cross-linking reaction between PC/CMC and metal ions significantly improved water resistance and mechanical properties of composite films (P < 0.05). Even at high relative humidity (RH = 84 %), cross-linking of Ca2+, Mg2+, and Zn2+ significantly increased the tensile index of the films by 1.37, 1.41, and 1.52 times (P < 0.05), respectively. Moreover, the complexation of metal ions/polysaccharides with ACNs reduced the decomposition rate of ACNs, improved the storage stability and antioxidant capacity of ACNs, and also increased the sensitivity of the colorimetric response of the indicator films in monitoring shrimp freshness. Thus, with this high sensitivity, the Red, Green and Blue (RGB) values of the films can be determined using a mobile phone application to monitor shrimp safety in real time. These results suggest that ACNs-metal cation-polysaccharide composite films have great potential for smart packaging applications.

16.
Int J Biol Macromol ; 273(Pt 2): 133173, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38880441

ABSTRACT

Sodium alginate (SA) and chito oligosaccharide (COS) are widely used food additives in the food industry, and exploring their interaction to form polyelectrolyte complexes (PECs) may provide insights into food development. In the present study, the effects of viscosity-average molecular weight (Mv) and relative amounts of SA on the formation of sodium alginate/chito oligosaccharide polyelectrolyte (SCP) complexes were investigated. The results showed that the electrostatic interaction between -COOH and -NH2 and the hydrogen bonding between OH, were attributed to the formation of the SCP complexes. Then the formation and properties of SCP complexes were greatly dependent on the Mv and the relative amount of SA. SA with Mv of ≥2.16 × 106 Da could form spherical SCP complexes, while the SA/COS ratio (w/w) ≥ 0.8 was not conducive to the formation of SCP complexes. Moreover, the SCP complexes were more stable in the gastric environment than in the intestinal condition. In addition, 1.73 × 107 Da was the optimal Mv of SA for SCP complexes formation. This study contributed to a comprehensive understanding of the interaction between SA and COS, and shed light on the potential application of SA and COS formulation to develop new food products.


Subject(s)
Alginates , Molecular Weight , Oligosaccharides , Polyelectrolytes , Alginates/chemistry , Oligosaccharides/chemistry , Polyelectrolytes/chemistry , Viscosity , Chitosan/chemistry , Static Electricity , Hydrogen Bonding
17.
J Fungi (Basel) ; 10(6)2024 May 22.
Article in English | MEDLINE | ID: mdl-38921358

ABSTRACT

Alpinia oxyphylla is a traditional Chinese medicinal plant with a medicinal history of more than 1700 years. Ring leaf blight (RLB) disease, caused by pestalotioid species, is an important disease of A. oxyphylla, seriously affecting the yield and quality of its fruits. The causal agent of RLB disease has not been systematically identified or characterized yet. In this study, thirty-six pestalotioid strains were isolated from the leaves and stems of A. oxyphylla that was collected from six cities of Hainan province, China. Based on the multi-locus phylogeny (ITS, tef-1α and tub2) and morphological characteristic analyses, seventeen species belonging to three genera (Neopestalotiopsis, Pestalotiopsis and Pseudopestalotiopsis) were identified, and six new species (N. baotingensis, N. oblatespora, N. olivaceous, N. oxyphylla, N. wuzhishanensis and N. yongxunensis) were described. Pathogenicity tests revealed that strains of Neopestalotiopsis species caused more severe ring leaf blight on A. oxyphylla than strains of Pestalotiopsis and Pseudopestalotiopsis under wounded inoculation conditions.

18.
Environ Sci Technol ; 58(27): 12167-12178, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38920332

ABSTRACT

Herein, we propose preferential dissolution paired with Cu-doping as an effective method for synergistically modulating the A- and B-sites of LaMnO3 perovskite. Through Cu-doping into the B-sites of LaMnO3, specifically modifying the B-sites, the double perovskite La2CuMnO6 was created. Subsequently, partial La from the A-sites of La2CuMnO6 was etched using HNO3, forming novel La2CuMnO6/MnO2 (LCMO/MnO2) catalysts. The optimized catalyst, featuring an ideal Mn:Cu ratio of 4.5:1 (LCMO/MnO2-4.5), exhibited exceptional catalytic ozonation performance. It achieved approximately 90% toluene degradation with 56% selectivity toward CO2, even under ambient temperature (35 °C) and a relatively humid environment (45%). Modulation of A-sites induced the elongation of Mn-O bonds and decrease in the coordination number of Mn-O (from 6 to 4.3) in LCMO/MnO2-4.5, resulting in the creation of abundant multivalent Mn and oxygen vacancies. Doping Cu into B-sites led to the preferential chemisorption of toluene on multivalent Cu (Cu(I)/Cu(II)), consistent with theoretical predictions. Effective electronic supplementary interactions enabled the cycling of multiple oxidation states of Mn for ozone decomposition, facilitating the production of reactive oxygen species and the regeneration of oxygen vacancies. This study establishes high-performance perovskites for the synergistic regulation of O3 and toluene, contributing to cleaner and safer industrial activities.


Subject(s)
Ozone , Toluene , Catalysis , Ozone/chemistry , Toluene/chemistry , Titanium/chemistry , Oxides/chemistry , Calcium Compounds/chemistry
19.
ACS Biomater Sci Eng ; 10(7): 4541-4551, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38853393

ABSTRACT

NIR-II imaging-guided phototherapy is an attractive, yet challenging, tumor treatment strategy. By monitoring the accumulation of phototherapy reagents at the tumor site through imaging and determining the appropriate therapy window, the therapeutic effect could be significantly improved. Probes with NIR-II (1000-1700 nm) fluorescence emission and a large Stokes shift hold great promise for fluorescence imaging with deep penetration, minimized self-quenching, and high spatiotemporal resolution. However, due to the lack of a suitable molecular framework, the design of a simple small-molecule dye with a large Stokes shift and NIR-II fluorescence emission has rarely been reported. Herein, we prepare an asymmetric D-π-A type NIR-II fluorescence probe (TBy). The probe is incapsulated in an amphiphilic polymer and modified with a fibronectin targeting peptide CREKA, which could recognize the fibrin-fibronectin complex overexpressed in multiple malignant tumors. The nanoparticles thus constructed (TByC-NPs) have maximum fluorescence emission at 1037 nm with a large Stokes shift of 426 nm, which is the largest Stokes shift among organic NIR-II fluorescent dyes reported in the literature. The TByC-NPs exhibit a good NIR-II imaging performance, active tumor targeting, and good photothermal and photodynamic capabilities. In vitro and in vivo studies verify that the TByC nanoplatform shows outstanding biocompatibility for NIR-II imaging-guided phototherapy and provides an excellent antitumor effect.


Subject(s)
Fluorescent Dyes , Phototherapy , Fluorescent Dyes/chemistry , Animals , Phototherapy/methods , Humans , Optical Imaging/methods , Mice , Nanoparticles/chemistry , Nanoparticles/therapeutic use , Infrared Rays , Mice, Nude , Neoplasms/diagnostic imaging , Neoplasms/therapy , Cell Line, Tumor , Mice, Inbred BALB C
20.
Int J Biol Macromol ; 274(Pt 1): 133014, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38852729

ABSTRACT

Algal polysaccharides possess many biological activities and health benefits, such as antioxidant, anti-tumor, anti-coagulant, and immunomodulatory potential. Gut microbiota has emerged as one of the major contributor in mediating the health benefits of algal polysaccharides. In this study we showed that Haematococcus pluvialis polysaccharides (HPP) decreased serum transaminase levels and hepatic triglyceride content, alleviated inflammation and oxidative stress in the liver of chronic and binge ethanol diet-fed mice. Furthermore, HPP reduced endotoxemia, improved gut microbiota dysbiosis, inhibited epithelial barrier disruption and gut vascular barrier (GVB) damage in ethanol diet-fed mice. Co-housing vehicle-fed mice with HPP-fed mice alleviated ethanol-induced liver damage and endotoxemia. Moreover, fecal microbiota transplantation from HPP-fed mice into antibiotic-induced microbiota-depleted recipients also alleviated ethanol-induced liver injury and improved gut epithelial and vascular barrier. Our study demonstrated that HPP ameliorated ethanol-induced gut epithelial and vascular barrier dysfunction through alteration of gut microbiota, therefore preventing alcoholic liver damage.


Subject(s)
Chlorophyceae , Fatty Liver , Gastrointestinal Microbiome , Intestinal Mucosa , Polysaccharides , Chlorophyceae/chemistry , Polysaccharides/pharmacology , Male , Animals , Mice , Mice, Inbred C57BL , Gastrointestinal Microbiome/drug effects , Ethanol/toxicity , Epithelial Cells/drug effects , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Fatty Liver/prevention & control , Chemical and Drug Induced Liver Injury/drug therapy , Capillary Permeability/drug effects , Feces/microbiology , Oxidative Stress/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL