Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 8356, 2022 05 19.
Article in English | MEDLINE | ID: mdl-35589936

ABSTRACT

Human brain cells generated by in vitro cell programming provide exciting prospects for disease modeling, drug discovery and cell therapy. These applications frequently require efficient and clinically compliant tools for genetic modification of the cells. Recombinant adeno-associated viruses (AAVs) fulfill these prerequisites for a number of reasons, including the availability of a myriad of AAV capsid variants with distinct cell type specificity (also called tropism). Here, we harnessed a customizable parallel screening approach to assess a panel of natural or synthetic AAV capsid variants for their efficacy in lineage-related human neural cell types. We identified common lead candidates suited for the transduction of directly converted, early-stage induced neural stem cells (iNSCs), induced pluripotent stem cell (iPSC)-derived later-stage, radial glia-like neural progenitors, as well as differentiated astrocytic and mixed neuroglial cultures. We then selected a subset of these candidates for functional validation in iNSCs and iPSC-derived astrocytes, using shRNA-induced downregulation of the citrate transporter SLC25A1 and overexpression of the transcription factor NGN2 for proofs-of-concept. Our study provides a comparative overview of the susceptibility of different human cell programming-derived brain cell types to AAV transduction and a critical discussion of the assets and limitations of this specific AAV capsid screening approach.


Subject(s)
Dependovirus , Organic Anion Transporters , Capsid/metabolism , Capsid Proteins/genetics , Capsid Proteins/metabolism , Dependovirus/genetics , Dependovirus/metabolism , Genetic Therapy , Genetic Vectors/genetics , Humans , Mitochondrial Proteins/metabolism , Organic Anion Transporters/metabolism , Transduction, Genetic
2.
J Virol ; 96(7): e0009822, 2022 04 13.
Article in English | MEDLINE | ID: mdl-35285684

ABSTRACT

Respiratory viruses cause mild to severe diseases in humans every year, constituting a major public health problem. Characterizing the pathogenesis in physiologically relevant models is crucial for developing efficient vaccines and therapeutics. Here, we show that lung organoids derived from human primary or lung tumor tissue maintain the cellular composition and characteristics of the original tissue. Moreover, we show that these organoids sustain viral replication with particular infection foci formation, and they activate the expression of interferon-associated and proinflammatory genes responsible for mediating a robust innate immune response. All together, we show that three-dimensional (3D) lung organoids constitute a relevant platform to model diseases and enable the development of drug screenings. IMPORTANCE Three-dimensional (3D) human lung organoids reflect the native cell composition of the lung as well as its physiological properties. Human 3D lung organoids offer ideal conditions, such as timely availability in large quantities and high physiological relevance for reassessment and prediction of disease outbreaks of respiratory pathogens and pathogens that use the lung as a primary entry portal. Human lung organoids can be used in basic research and diagnostic settings as early warning cell culture systems and also serve as a relevant platform for modeling infectious diseases and drug development. They can be used to characterize pathogens and analyze the influence of infection on, for example, immunological parameters, such as the expression of interferon-associated and proinflammatory genes in the context of cancer. In our study, we found that cancer-derived lung organoids were more sensitive to influenza A virus infection than those derived from healthy tissue and demonstrated a decreased innate immune response.


Subject(s)
Lung , Organ Culture Techniques , Organoids , Communicable Diseases/diagnosis , Communicable Diseases/immunology , Humans , Immunity, Innate , Interferons , Lung/pathology , Organ Culture Techniques/methods , Organoids/immunology , Organoids/virology
3.
Hum Gene Ther ; 32(17-18): 959-974, 2021 09.
Article in English | MEDLINE | ID: mdl-33554722

ABSTRACT

We present membrane-based steric exclusion chromatography (SXC) as a universal capture step for purification of adeno-associated virus (AAV) gene transfer vectors independent of their serotype and surface characteristics. SXC is performed by mixing an unpurified cell culture supernatant containing AAV particles with polyethylene glycol (PEG) and feeding the mixture onto a chromatography filter unit. The purified AAV particles are recovered by flushing the unit with a solution lacking PEG. SXC is an inexpensive single-use method that permits to concentrate, purify, and re-buffer AAV particles with yields >95% and >80% impurity clearance. SXC could theoretically be employed at industrial scales with units of nearly 20 m2.


Subject(s)
Genetic Therapy , Polyethylene Glycols , Cell Culture Techniques , Chromatography, Gel , Dependovirus/genetics , Genes, Viral , Genetic Vectors/genetics
4.
Viruses ; 12(8)2020 08 07.
Article in English | MEDLINE | ID: mdl-32784757

ABSTRACT

Rapid large-scale testing is essential for controlling the ongoing pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The standard diagnostic pipeline for testing SARS-CoV-2 presence in patients with an ongoing infection is predominantly based on pharyngeal swabs, from which the viral RNA is extracted using commercial kits, followed by reverse transcription and quantitative PCR detection. As a result of the large demand for testing, commercial RNA extraction kits may be limited and, alternatively, non-commercial protocols are needed. Here, we provide a magnetic bead RNA extraction protocol that is predominantly based on in-house made reagents and is performed in 96-well plates supporting large-scale testing. Magnetic bead RNA extraction was benchmarked against the commercial QIAcube extraction platform. Comparable viral RNA detection sensitivity and specificity were obtained by fluorescent and colorimetric reverse transcription loop-mediated isothermal amplification (RT-LAMP) using a primer set targeting the N gene, as well as RT-qPCR using a primer set targeting the E gene, showing that the RNA extraction protocol presented here can be combined with a variety of detection methods at high throughput. Importantly, the presented diagnostic workflow can be quickly set up in a laboratory without access to an automated pipetting robot.


Subject(s)
Betacoronavirus/chemistry , Betacoronavirus/genetics , Clinical Laboratory Techniques/methods , Coronavirus Infections/virology , Pneumonia, Viral/virology , RNA, Viral/isolation & purification , Betacoronavirus/isolation & purification , COVID-19 , COVID-19 Testing , Coronavirus Infections/diagnosis , Humans , Magnetic Phenomena , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , Pandemics , Pneumonia, Viral/diagnosis , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction/methods , Reverse Transcription , SARS-CoV-2 , Sensitivity and Specificity
5.
Xenobiotica ; 42(10): 939-56, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22524704

ABSTRACT

1. We have developed a novel technique which causes primary human hepatocytes to proliferate by transducing them with genes that upregulate their proliferation. 2. Upcyte(®) hepatocytes did not form colonies in soft agar and are not immortalised anchorage-independent cells. Confluent cultures expressed liver-specific proteins, produced urea and stored glycogen. 3. CYP activities were low but similar to that in 5-day cultures of primary human hepatocytes. CYP1A2 and CYP3A4 were inducible; moreover, upcyte(®) hepatocytes predicted the in vivo induction potencies of known CYP3A4 inducers using the "relative induction score" prediction model. Placing cells into 3D culture increased their basal CYP2B6 and CYP3A4 basal activities and induction responses. 4. Phase 2 activities (UGTs, SULTs and GSTs) were comparable to activities in freshly isolated hepatocytes. 5. Upcyte(®) hepatocytes were markedly more sensitive to the hepatotoxin, α-amanitin, than HepG2 cells, indicating functional OATP1B3 uptake. The cytotoxicity of aflatoxin B(1), was decreased in upcyte(®) hepatocytes by co-incubation with the CYP3A4 inhibitor, ketoconazole. Upcyte(®) hepatocytes also differentiated between ten hepatotoxic and eight non-hepatotoxic compounds. 6. In conclusion, upcyte(®) hepatocyte cultures have a differentiated phenotype and exhibit functional phase 1 and 2 activities. These data support the use of upcyte(®) hepatocytes for CYP induction and cytotoxicity screening.


Subject(s)
Cell Culture Techniques/methods , Hepatocytes/cytology , Toxicity Tests/methods , Up-Regulation , Adult , Aflatoxin B1/toxicity , Alpha-Amanitin/toxicity , Biomarkers/metabolism , Cell Death/drug effects , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cell Shape/drug effects , Colony-Forming Units Assay , Cytochrome P-450 Enzyme System/biosynthesis , Enzyme Induction/drug effects , Hep G2 Cells , Hepatocytes/drug effects , Hepatocytes/enzymology , Hepatocytes/metabolism , Human Umbilical Vein Endothelial Cells , Humans , Inhibitory Concentration 50 , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transduction, Genetic , Up-Regulation/drug effects , Urea/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...