Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Acta Neuropathol ; 143(6): 641-662, 2022 06.
Article En | MEDLINE | ID: mdl-35471463

Approximately half of Alzheimer's disease (AD) brains have concomitant Lewy pathology at autopsy, suggesting that α-synuclein (α-SYN) aggregation is a regulated event in the pathogenesis of AD. Genome-wide association studies revealed that the ε4 allele of the apolipoprotein E (APOE4) gene, the strongest genetic risk factor for AD, is also the most replicated genetic risk factor for Lewy body dementia (LBD), signifying an important role of APOE4 in both amyloid-ß (Aß) and α-SYN pathogenesis. How APOE4 modulates α-SYN aggregation in AD is unclear. In this study, we aimed to determine how α-SYN is associated with AD-related pathology and how APOE4 impacts α-SYN seeding and toxicity. We measured α-SYN levels and their association with other established AD-related markers in brain samples from autopsy-confirmed AD patients (N = 469), where 54% had concomitant LB pathology (AD + LB). We found significant correlations between the levels of α-SYN and those of Aß40, Aß42, tau and APOE, particularly in insoluble fractions of AD + LB. Using a real-time quaking-induced conversion (RT-QuIC) assay, we measured the seeding activity of soluble α-SYN and found that α-SYN seeding was exacerbated by APOE4 in the AD cohort, as well as a small cohort of autopsy-confirmed LBD brains with minimal Alzheimer type pathology. We further fractionated the soluble AD brain lysates by size exclusion chromatography (SEC) ran on fast protein liquid chromatography (FPLC) and identified the α-SYN species (~ 96 kDa) that showed the strongest seeding activity. Finally, using human induced pluripotent stem cell (iPSC)-derived neurons, we showed that amplified α-SYN aggregates from AD + LB brain of patients with APOE4 were highly toxic to neurons, whereas the same amount of α-SYN monomer was not toxic. Our findings suggest that the presence of LB pathology correlates with AD-related pathologies and that APOE4 exacerbates α-SYN seeding activity and neurotoxicity, providing mechanistic insight into how APOE4 affects α-SYN pathogenesis in AD.


Alzheimer Disease , Apolipoprotein E4 , Induced Pluripotent Stem Cells , Lewy Body Disease , Neurotoxicity Syndromes , Alzheimer Disease/pathology , Apolipoprotein E4/genetics , Apolipoproteins E , Genome-Wide Association Study , Humans , Induced Pluripotent Stem Cells/metabolism , Lewy Bodies/pathology , Lewy Body Disease/pathology , alpha-Synuclein/metabolism , tau Proteins/metabolism
2.
Neuron ; 106(5): 727-742.e6, 2020 06 03.
Article En | MEDLINE | ID: mdl-32199103

Evidence suggests interplay among the three major risk factors for Alzheimer's disease (AD): age, APOE genotype, and sex. Here, we present comprehensive datasets and analyses of brain transcriptomes and blood metabolomes from human apoE2-, apoE3-, and apoE4-targeted replacement mice across young, middle, and old ages with both sexes. We found that age had the greatest impact on brain transcriptomes highlighted by an immune module led by Trem2 and Tyrobp, whereas APOE4 was associated with upregulation of multiple Serpina3 genes. Importantly, these networks and gene expression changes were mostly conserved in human brains. Finally, we observed a significant interaction between age, APOE genotype, and sex on unfolded protein response pathway. In the periphery, APOE2 drove distinct blood metabolome profile highlighted by the upregulation of lipid metabolites. Our work identifies unique and interactive molecular pathways underlying AD risk factors providing valuable resources for discovery and validation research in model systems and humans.


Aging/genetics , Alzheimer Disease/genetics , Apolipoproteins E/genetics , Brain/metabolism , Serpins/genetics , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/immunology , Age Factors , Alzheimer Disease/metabolism , Animals , Apolipoprotein E2/genetics , Apolipoprotein E3/genetics , Apolipoprotein E4/genetics , Female , Gene Expression , Gene Expression Profiling , Gene Regulatory Networks , Genotype , Humans , Male , Membrane Glycoproteins/genetics , Membrane Glycoproteins/immunology , Membrane Proteins/genetics , Membrane Proteins/immunology , Metabolome , Mice , Mice, Transgenic , Protective Factors , Receptors, Immunologic/genetics , Receptors, Immunologic/immunology , Risk Factors , Sex Factors , Unfolded Protein Response/genetics
...