Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 219
Filter
2.
Circ Heart Fail ; 17(8): e011569, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39119698

ABSTRACT

BACKGROUND: Growing evidence indicates that trimethylamine N-oxide, a gut microbial metabolite of dietary choline and carnitine, promotes both cardiovascular disease and chronic kidney disease risk. It remains unclear how circulating concentrations of trimethylamine N-oxide and its related dietary and gut microbe-derived metabolites (choline, betaine, carnitine, γ-butyrobetaine, and crotonobetaine) affect incident heart failure (HF). METHODS: We evaluated 11 768 participants from the Cardiovascular Health Study and the Multi-Ethnic Study of Atherosclerosis with serial measures of metabolites. Cox proportional hazard models were used to examine the associations between metabolites and incident HF, adjusted for cardiovascular disease risk factors. RESULTS: In all, 2102 cases of HF occurred over a median follow-up of 15.9 years. After adjusting for traditional risk factors, higher concentrations of trimethylamine N-oxide (hazard ratio, 1.15 [95% CI, 1.09-1.20]; P<0.001), choline (hazard ratio, 1.44 [95% CI, 1.26-1.64]; P<0.001), and crotonobetaine (hazard ratio, 1.24 [95% CI, 1.16-1.32]; P<0.001) were associated with increased risk for incident HF. After further adjustment for renal function (potential confounder or mediator), these associations did not reach Bonferroni-corrected statistical significance (P=0.01, 0.049, and 0.006, respectively). Betaine and carnitine were nominally associated with a higher incidence of HF (P<0.05). In exploratory analyses, results were similar for subtypes of HF based on left ventricular ejection fraction, and associations appeared generally stronger among Black and Hispanic/Latino versus White adults, although there were no interactions for any metabolites with race. CONCLUSIONS: In this pooled analysis of 2 well-phenotyped, diverse, community-based cohorts, circulating concentrations of gut microbe-derived metabolites such as trimethylamine N-oxide, choline, and crotonobetaine were independently associated with a higher risk of developing HF. REGISTRATION: URL: https://www.clinicaltrials.gov/; Unique identifiers: NCT00005133 and NCT00005487.


Subject(s)
Betaine , Carnitine , Choline , Gastrointestinal Microbiome , Heart Failure , Methylamines , Humans , Methylamines/blood , Heart Failure/epidemiology , Heart Failure/ethnology , Heart Failure/blood , Gastrointestinal Microbiome/physiology , Female , Male , Aged , Middle Aged , Incidence , Choline/blood , Carnitine/analogs & derivatives , Carnitine/blood , Betaine/blood , Betaine/analogs & derivatives , United States/epidemiology , Risk Factors , Biomarkers/blood , Aged, 80 and over
3.
Clin Nutr ; 43(8): 1929-1940, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39018652

ABSTRACT

BACKGROUND & AIMS: Plant-based diets are associated with a lower risk of chronic diseases. Large-scale proteomics can identify objective biomarkers of plant-based diets, and improve our understanding of the pathways that link plant-based diets to health outcomes. This study investigated the plasma proteome of four different plant-based diets [overall plant-based diet (PDI), provegetarian diet, healthful plant-based diet (hPDI), and unhealthful plant-based diet (uPDI)] in the Atherosclerosis Risk in Communities (ARIC) Study and replicated the findings in the Framingham Heart Study (FHS) Offspring cohort. METHODS: ARIC Study participants at visit 3 (1993-1995) with completed food frequency questionnaire (FFQ) data and proteomics data were divided into internal discovery (n = 7690) and replication (n = 2543) data sets. Multivariable linear regression was used to examine associations between plant-based diet indices (PDIs) and 4955 individual proteins in the discovery sample. Then, proteins that were internally replicated in the ARIC Study were tested for external replication in FHS (n = 1358). Pathway overrepresentation analysis was conducted for diet-related proteins. C-statistics were used to predict if the proteins improved prediction of plant-based diet indices beyond participant characteristics. RESULTS: In ARIC discovery, a total of 837 diet-protein associations (PDI = 233; provegetarian = 182; hPDI = 406; uPDI = 16) were observed at false discovery rate (FDR) < 0.05. Of these, 453 diet-protein associations (PDI = 132; provegetarian = 104; hPDI = 208; uPDI = 9) were internally replicated. In FHS, 167/453 diet-protein associations were available for external replication, of which 8 proteins (PDI = 1; provegetarian = 0; hPDI = 8; uPDI = 0) replicated. Complement and coagulation cascades, cell adhesion molecules, and retinol metabolism were over-represented. C-C motif chemokine 25 for PDI and 8 proteins for hPDI modestly but significantly improved the prediction of these indices individually and collectively (P value for difference in C-statistics<0.05 for all tests). CONCLUSIONS: Using large-scale proteomics, we identified potential candidate biomarkers of plant-based diets, and pathways that may partially explain the associations between plant-based diets and chronic conditions.


Subject(s)
Atherosclerosis , Blood Proteins , Diet, Plant-Based , Aged , Female , Humans , Male , Middle Aged , Atherosclerosis/blood , Atherosclerosis/epidemiology , Biomarkers/blood , Blood Proteins/analysis , Cohort Studies , Diet, Healthy/statistics & numerical data , Diet, Plant-Based/statistics & numerical data , Prospective Studies , Proteomics/methods , Risk Factors
4.
Res Sq ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39070619

ABSTRACT

With age, hematopoietic stem cells can acquire somatic mutations in leukemogenic genes that confer a proliferative advantage in a phenomenon termed "clonal hematopoiesis of indeterminate potential" (CHIP). How these mutations confer a proliferative advantage and result in increased risk for numerous age-related diseases remains poorly understood. We conducted a multiracial meta-analysis of epigenome-wide association studies (EWAS) of CHIP and its subtypes in four cohorts (N=8196) to elucidate the molecular mechanisms underlying CHIP and illuminate how these changes influence cardiovascular disease risk. The EWAS findings were functionally validated using human hematopoietic stem cell (HSC) models of CHIP. A total of 9615 CpGs were associated with any CHIP, 5990 with DNMT3A CHIP, 5633 with TET2 CHIP, and 6078 with ASXL1 CHIP (P <1×10-7). CpGs associated with CHIP subtypes overlapped moderately, and the genome-wide DNA methylation directions of effect were opposite for TET2 and DNMT3A CHIP, consistent with their opposing effects on global DNA methylation. There was high directional concordance between the CpGs shared from the meta-EWAS and human edited CHIP HSCs. Expression quantitative trait methylation analysis further identified transcriptomic changes associated with CHIP-associated CpGs. Causal inference analyses revealed 261 CHIP-associated CpGs associated with cardiovascular traits and all-cause mortality (FDR adjusted p-value <0.05). Taken together, our study sheds light on the epigenetic changes impacted by CHIP and their associations with age-related disease outcomes. The novel genes and pathways linked to the epigenetic features of CHIP may serve as therapeutic targets for preventing or treating CHIP-mediated diseases.

5.
Circulation ; 150(2): 102-110, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38860364

ABSTRACT

BACKGROUND: The majority of out-of-hospital cardiac arrests (OHCAs) occur among individuals in the general population, for whom there is no established strategy to identify risk. In this study, we assess the use of electronic health record (EHR) data to identify OHCA in the general population and define salient factors contributing to OHCA risk. METHODS: The analytical cohort included 2366 individuals with OHCA and 23 660 age- and sex-matched controls receiving health care at the University of Washington. Comorbidities, electrocardiographic measures, vital signs, and medication prescription were abstracted from the EHR. The primary outcome was OHCA. Secondary outcomes included shockable and nonshockable OHCA. Model performance including area under the receiver operating characteristic curve and positive predictive value were assessed and adjusted for observed rate of OHCA across the health system. RESULTS: There were significant differences in demographic characteristics, vital signs, electrocardiographic measures, comorbidities, and medication distribution between individuals with OHCA and controls. In external validation, discrimination in machine learning models (area under the receiver operating characteristic curve 0.80-0.85) was superior to a baseline model with conventional cardiovascular risk factors (area under the receiver operating characteristic curve 0.66). At a specificity threshold of 99%, correcting for baseline OHCA incidence across the health system, positive predictive value was 2.5% to 3.1% in machine learning models compared with 0.8% for the baseline model. Longer corrected QT interval, substance abuse disorder, fluid and electrolyte disorder, alcohol abuse, and higher heart rate were identified as salient predictors of OHCA risk across all machine learning models. Established cardiovascular risk factors retained predictive importance for shockable OHCA, but demographic characteristics (minority race, single marital status) and noncardiovascular comorbidities (substance abuse disorder) also contributed to risk prediction. For nonshockable OHCA, a range of salient predictors, including comorbidities, habits, vital signs, demographic characteristics, and electrocardiographic measures, were identified. CONCLUSIONS: In a population-based case-control study, machine learning models incorporating readily available EHR data showed reasonable discrimination and risk enrichment for OHCA in the general population. Salient factors associated with OCHA risk were myriad across the cardiovascular and noncardiovascular spectrum. Public health and tailored strategies for OHCA prediction and prevention will require incorporation of this complexity.


Subject(s)
Electronic Health Records , Out-of-Hospital Cardiac Arrest , Humans , Male , Out-of-Hospital Cardiac Arrest/epidemiology , Out-of-Hospital Cardiac Arrest/diagnosis , Female , Middle Aged , Aged , Risk Factors , Adult , Predictive Value of Tests , Risk Assessment , Comorbidity , Electrocardiography , Machine Learning , Case-Control Studies
7.
Epigenetics ; 19(1): 2333668, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38571307

ABSTRACT

Systemic low-grade inflammation is a feature of chronic disease. C-reactive protein (CRP) is a common biomarker of inflammation and used as an indicator of disease risk; however, the role of inflammation in disease is not completely understood. Methylation is an epigenetic modification in the DNA which plays a pivotal role in gene expression. In this study we evaluated differential DNA methylation patterns associated with blood CRP level to elucidate biological pathways and genetic regulatory mechanisms to improve the understanding of chronic inflammation. The racially and ethnically diverse participants in this study were included as 50% White, 41% Black or African American, 7% Hispanic or Latino/a, and 2% Native Hawaiian, Asian American, American Indian, or Alaska Native (total n = 13,433) individuals. We replicated 113 CpG sites from 87 unique loci, of which five were novel (CADM3, NALCN, NLRC5, ZNF792, and cg03282312), across a discovery set of 1,150 CpG sites associated with CRP level (p < 1.2E-7). The downstream pathways affected by DNA methylation included the identification of IFI16 and IRF7 CpG-gene transcript pairs which contributed to the innate immune response gene enrichment pathway along with NLRC5, NOD2, and AIM2. Gene enrichment analysis also identified the nuclear factor-kappaB transcription pathway. Using two-sample Mendelian randomization (MR) we inferred methylation at three CpG sites as causal for CRP levels using both White and Black or African American MR instrument variables. Overall, we identified novel CpG sites and gene transcripts that could be valuable in understanding the specific cellular processes and pathogenic mechanisms involved in inflammation.


Subject(s)
C-Reactive Protein , DNA Methylation , Humans , C-Reactive Protein/genetics , Epigenesis, Genetic , DNA , Inflammation/genetics , Genome-Wide Association Study , CpG Islands , Intracellular Signaling Peptides and Proteins/genetics
8.
J Am Heart Assoc ; 13(6): e032008, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38456405

ABSTRACT

BACKGROUND: Sudden cardiac death (SCD) is a significant global public health problem accounting for 15% to 20% of all deaths. A great majority of SCD is associated with coronary heart disease, which may first be detected at autopsy. The ankle-brachial index (ABI) is a simple, noninvasive measure of subclinical atherosclerosis. The purpose of this study was to examine the relationship between ABI and SCD in a middle-aged biracial general population. METHODS AND RESULTS: Participants of the ARIC (Atherosclerosis Risk in Communities) study with an ABI measurement between 1987 and 1989 were included. ABI was categorized as low (≤0.90), borderline (0.90-1.00), normal (1.00-1.40), and noncompressible (>1.40). SCD was defined as a sudden pulseless condition presumed to be caused by a ventricular tachyarrhythmia in a previously stable individual and was adjudicated by a committee of cardiac electrophysiologists, cardiologists, and internists. Cox proportional hazards models were used to evaluate the associations between baseline ABI and incident SCD. Of the 15 081 participants followed for a median of 23.5 years, 556 (3.7%) developed SCD (1.96 cases per 1000 person-years). Low and borderline ABIs were associated with an increased risk of SCD (demographically adjusted hazard ratios [HRs], 2.27 [95% CI, 1.64-3.14] and 1.52 [95% CI, 1.17-1.96], respectively) compared with normal ABI. The association between low ABI and SCD remained significant after adjustment for traditional cardiovascular risk factors (HR, 1.63 [95% CI, 1.15-2.32]). CONCLUSIONS: Low ABI is independently associated with an increased risk of SCD in a middle-aged biracial general population. ABI could be incorporated into future SCD risk prediction models.


Subject(s)
Atherosclerosis , Coronary Disease , Middle Aged , Humans , Ankle Brachial Index , Risk Factors , Atherosclerosis/epidemiology , Death, Sudden, Cardiac/epidemiology , Death, Sudden, Cardiac/etiology , Coronary Disease/complications , Risk Assessment
9.
Emerg Infect Dis ; 30(3): 539-547, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38407166

ABSTRACT

This study aimed to estimate the incidence rates of post-COVID-19 fatigue and chronic fatigue and to quantify the additional incident fatigue caused by COVID-19. We analyzed electronic health records data of 4,589 patients with confirmed COVID-19 during February 2020-February 2021 who were followed for a median of 11.4 (interquartile range 7.8-15.5) months and compared them to data from 9,022 propensity score-matched non-COVID-19 controls. Among COVID-19 patients (15% hospitalized for acute COVID-19), the incidence rate of fatigue was 10.2/100 person-years and the rate of chronic fatigue was 1.8/100 person-years. Compared with non-COVID-19 controls, the hazard ratios were 1.68 (95% CI 1.48-1.92) for fatigue and 4.32 (95% CI 2.90-6.43) for chronic fatigue. The observed association between COVID-19 and the significant increase in the incidence of fatigue and chronic fatigue reinforces the need for public health actions to prevent SARS-CoV-2 infections.


Subject(s)
COVID-19 , Fatigue Syndrome, Chronic , Humans , Incidence , COVID-19/epidemiology , Muscle Fatigue , SARS-CoV-2
10.
J Am Heart Assoc ; 13(3): e028902, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38240206

ABSTRACT

BACKGROUND: Sex-specific risk management may improve outcomes in congenital long QT syndrome (LQTS). We recently developed a prediction score for cardiac events (CEs) and life-threatening events (LTEs) in postadolescent women with LQTS. In the present study, we aimed to develop personalized risk estimates for the burden of CEs and LTEs in male adolescents with potassium channel-mediated LQTS. METHODS AND RESULTS: The prognostic model was derived from the LQTS Registry headquartered in Rochester, NY, comprising 611 LQT1 or LQT2 male adolescents from age 10 through 20 years, using the following variables: genotype/mutation location, QTc-specific thresholds, history of syncope, and ß-blocker therapy. Anderson-Gill modeling was performed for the end point of CE burden (total number of syncope, aborted cardiac arrest, and appropriate defibrillator shocks). The applicability of the CE prediction model was tested for the end point of the first LTE (excluding syncope and adding sudden cardiac death) using Cox modeling. A total of 270 CEs occurred during follow-up. The genotype-phenotype risk prediction model identified low-, intermediate-, and high-risk groups, comprising 74%, 14%, and 12% of the study population, respectively. Compared with the low-risk group, high-risk male subjects experienced a pronounced 5.2-fold increased risk of recurrent CEs (P<0.001), whereas intermediate-risk patients had a 2.1-fold (P=0.004) increased risk . At age 20 years, the low-, intermediate-, and high-risk adolescent male patients had on average 0.3, 0.6, and 1.4 CEs per person, respectively. Corresponding 10-year adjusted probabilities for a first LTE were 2%, 6%, and 8%. CONCLUSIONS: Personalized genotype-phenotype risk estimates can be used to guide sex-specific management in male adolescents with potassium channel-mediated LQTS.


Subject(s)
Long QT Syndrome , Potassium Channels , Humans , Male , Adolescent , Female , Young Adult , Adult , Child , Potassium Channels/genetics , Long QT Syndrome/diagnosis , Long QT Syndrome/genetics , Long QT Syndrome/congenital , Death, Sudden, Cardiac/epidemiology , Death, Sudden, Cardiac/etiology , Syncope/genetics , Syncope/epidemiology , Genotype , Risk Factors , Risk Assessment , Electrocardiography
11.
Arterioscler Thromb Vasc Biol ; 44(1): 300-313, 2024 01.
Article in English | MEDLINE | ID: mdl-37916415

ABSTRACT

BACKGROUND: Polygenic risk scores (PRSs) for coronary artery disease (CAD) potentially improve cardiovascular risk prediction. However, their relationship with histopathologic features of CAD has never been examined systematically. METHODS: From 4327 subjects referred to CVPath by the State of Maryland Office Chief Medical Examiner for sudden death between 1994 and 2015, 2455 cases were randomly selected for genotyping. We generated PRS from 291 known CAD risk loci. Detailed histopathologic examination of the coronary arteries was performed in all subjects. The primary study outcome measurements were histopathologic plaque features determining severity of atherosclerosis, including %stenosis, calcification, thin-cap fibroatheromas, and thrombotic CAD. RESULTS: After exclusion of cases with insufficient DNA sample quality or with missing data, 954 cases (mean age, 48.8±14.7 years; 75.7% men) remained in the final study cohort. Subjects in the highest PRS quintile exhibited more severe atherosclerosis compared with subjects in the lowest quintile, with greater %stenosis (80.3%±27.0% versus 50.4%±38.7%; adjusted P<0.001) and a higher frequency of calcification (69.6% versus 35.8%; adjusted P=0.004) and thin-cap fibroatheroma (26.7% versus 9.5%; adjusted P=0.007). Even after adjustment for traditional CAD risk factors, subjects within the highest PRS quintile had higher odds of severe atherosclerosis (ie, ≥75% stenosis; adjusted odds ratio, 3.77 [95% CI, 2.10-6.78]; P<0.001) and plaque rupture (adjusted odds ratio, 4.05 [95% CI, 2.26-7.24]; P<0.001). Moreover, subjects within the highest quintile had higher odds of CAD-associated cause of death, especially among those aged ≤50 years (adjusted odds ratio, 4.08 [95% CI, 2.01-8.30]; P<0.001). No statistically significant associations were observed with plaque erosion after adjusting for covariates. CONCLUSIONS: This is the first autopsy study investigating associations between PRS and atherosclerosis severity at the histopathologic level in subjects with sudden death. Our pathological analysis suggests PRS correlates with plaque burden and features of advanced atherosclerosis and may be useful as a method for CAD risk stratification, especially in younger subjects.


Subject(s)
Atherosclerosis , Coronary Artery Disease , Plaque, Atherosclerotic , Male , Humans , Adult , Middle Aged , Female , Genetic Risk Score , Constriction, Pathologic , Risk Factors , Coronary Artery Disease/genetics , Coronary Artery Disease/pathology , Death, Sudden , Autopsy
12.
BMJ Glob Health ; 8(Suppl 9)2023 10.
Article in English | MEDLINE | ID: mdl-37914183

ABSTRACT

Secondary prevention of acute rheumatic fever (ARF) and rheumatic heart disease (RHD) involves continuous antimicrobial prophylaxis among affected individuals and is recognised as a cornerstone of public health programmes that address these conditions. However, several important scientific issues around the secondary prevention paradigm remain unresolved. This report details research priorities for secondary prevention that were developed as part of a workshop convened by the US National Heart, Lung, and Blood Institute in November 2021. These span basic, translational, clinical and population science research disciplines and are built on four pillars. First, we need a better understanding of RHD epidemiology to guide programmes, policies, and clinical and public health practice. Second, we need better strategies to find and diagnose people affected by ARF and RHD. Third, we urgently need better tools to manage acute RF and slow the progression of RHD. Fourth, new and existing technologies for these conditions need to be better integrated into healthcare systems. We intend for this document to be a reference point for research organisations and research sponsors interested in contributing to the growing scientific community focused on RHD prevention and control.


Subject(s)
Rheumatic Fever , Rheumatic Heart Disease , United States , Humans , Rheumatic Fever/prevention & control , Rheumatic Fever/complications , Rheumatic Fever/diagnosis , Rheumatic Heart Disease/prevention & control , Rheumatic Heart Disease/diagnosis , Secondary Prevention , National Heart, Lung, and Blood Institute (U.S.) , Research Design
13.
BMJ Glob Health ; 8(Suppl 9)2023 10.
Article in English | MEDLINE | ID: mdl-37914184

ABSTRACT

Primary prevention of acute rheumatic fever (ARF) and rheumatic heart disease (RHD) encompasses the timely diagnosis and adequate treatment of the superficial group A Streptococcus (GAS) infections pharyngitis and impetigo. GAS is the only known inciting agent in the pathophysiology of the disease. However, sufficient evidence indicates that the uptake and delivery of primary prevention approaches in RHD-endemic regions are significantly suboptimal. This report presents expert deliberations on priority research and implementation opportunities for primary prevention of ARF/RHD that were developed as part of a workshop convened by the US National Heart, Lung, and Blood Institute in November 2021. The opportunities identified by the Primary Prevention Working Group encompass epidemiological, laboratory, clinical, implementation and dissemination research domains and are anchored on five pillars including: (A) to gain a better understanding of superficial GAS infection epidemiology to guide programmes and policies; (B) to improve diagnosis of superficial GAS infections in RHD endemic settings; (C) to develop scalable and sustainable models for delivery of primary prevention; (D) to understand potential downstream effects of the scale-up of primary prevention and (E) to develop and conduct economic evaluations of primary prevention strategies in RHD endemic settings. In view of the multisectoral stakeholders in primary prevention strategies, we emphasise the need for community co-design and government engagement, especially in the implementation and dissemination research arena. We present these opportunities as a reference point for research organisations and sponsors who aim to contribute to the increasing momentum towards the global control and prevention of RHD.


Subject(s)
Rheumatic Fever , Rheumatic Heart Disease , Humans , National Heart, Lung, and Blood Institute (U.S.) , Primary Prevention , Rheumatic Fever/diagnosis , Rheumatic Fever/prevention & control , Rheumatic Fever/epidemiology , Rheumatic Heart Disease/diagnosis , Rheumatic Heart Disease/prevention & control , Rheumatic Heart Disease/epidemiology , United States
14.
JAMA Netw Open ; 6(11): e2343854, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37976059

ABSTRACT

Importance: Sphingolipids, including ceramides and sphingomyelins, may influence the pathophysiology and risk of sudden cardiac death (SCD) through multiple biological activities. Whether the length of the fatty acid acylated to plasma sphingolipid species is associated with SCD risk is not known. Objective: To determine whether the saturated fatty acid length of plasma ceramides and sphingomyelins influences the association with SCD risk. Design, Setting, and Participants: In this cohort study, multivariable Cox proportional hazards regression models were used to examine the association of sphingolipid species with SCD risk. The study population included 4612 participants in the Cardiovascular Health Study followed up prospectively for a median of 10.2 (IQR, 5.5-11.6) years. Baseline data were collected from January 1992 to December 1995 during annual examinations. Data were analyzed from February 11, 2020, to September 9, 2023. Exposures: Eight plasma sphingolipid species (4 ceramides and 4 sphingomyelins) with saturated fatty acids of 16, 20, 22, and 24 carbons. Main Outcome and Measure: Association of plasma ceramides and sphingomyelins with saturated fatty acids of different lengths with SCD risk. Results: Among the 4612 CHS participants included in the analysis (mean [SD] age, 77 [5] years; 2724 [59.1%] women; 6 [0.1%] American Indian; 4 [0.1%] Asian; 718 [15.6%] Black; 3869 [83.9%] White, and 15 [0.3%] Other), 215 SCD cases were identified. In adjusted Cox proportional hazards regression analyses, plasma ceramides and sphingomyelins with palmitic acid (Cer-16 and SM-16) were associated with higher SCD risk per higher SD of log sphingolipid levels (hazard ratio [HR] for Cer-16, 1.34 [95% CI, 1.12-1.59]; HR for SM-16, 1.37 [95% CI, 1.12-1.67]). Associations did not differ by baseline age, sex, race, or body mass index. No significant association of SCD with sphingolipids with very-long-chain saturated fatty acids was observed after correction for multiple testing (HR for ceramide with arachidic acid, 1.06 [95% CI, 0.90-1.24]; HR for ceramide with behenic acid, 0.92 [95% CI, 0.77-1.10]; HR for ceramide with lignoceric acid, 0.92 [95% CI, 0.77-1.09]; HR for sphingomyelin with arachidic acid, 0.83 [95% CI, 0.71-0.98]; HR for sphingomyelin with behenic acid, 0.84 [95% CI, 0.70-1.00]; HR for sphingomyelin with lignoceric acid, 0.86 [95% CI, 0.72-1.03]). Conclusions and Relevance: The findings of this large, population-based cohort study of SCD identified that higher plasma levels of Cer-16 and SM-16 were associated with higher risk of SCD. Future studies are needed to examine the underlying mechanism of these associations.


Subject(s)
Ceramides , Sphingomyelins , Humans , Female , Aged , Male , Eicosanoic Acids , Cohort Studies , Fatty Acids , Sphingolipids , Death, Sudden, Cardiac/epidemiology , Death, Sudden, Cardiac/etiology
15.
Cell Genom ; 3(10): 100401, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37868038

ABSTRACT

Each human genome has tens of thousands of rare genetic variants; however, identifying impactful rare variants remains a major challenge. We demonstrate how use of personal multi-omics can enable identification of impactful rare variants by using the Multi-Ethnic Study of Atherosclerosis, which included several hundred individuals, with whole-genome sequencing, transcriptomes, methylomes, and proteomes collected across two time points, 10 years apart. We evaluated each multi-omics phenotype's ability to separately and jointly inform functional rare variation. By combining expression and protein data, we observed rare stop variants 62 times and rare frameshift variants 216 times as frequently as controls, compared to 13-27 times as frequently for expression or protein effects alone. We extended a Bayesian hierarchical model, "Watershed," to prioritize specific rare variants underlying multi-omics signals across the regulatory cascade. With this approach, we identified rare variants that exhibited large effect sizes on multiple complex traits including height, schizophrenia, and Alzheimer's disease.

16.
Ann Noninvasive Electrocardiol ; 28(5): e13080, 2023 09.
Article in English | MEDLINE | ID: mdl-37571804

ABSTRACT

BACKGROUND: Congenital Long QT Syndrome (LQTS) is a hereditary arrhythmic disorder. We aimed to assess the performance of current genetic variant annotation scores among LQTS patients and their predictive impact. METHODS: We evaluated 2025 patients with unique mutations for LQT1-LQT3. A patient-specific score was calculated for each of four established genetic variant annotation algorithms: CADD, SIFT, REVEL, and PolyPhen-2. The scores were tested for the identification of LQTS and their predictive performance for cardiac events (CE) and life-threatening events (LTE) and then compared with the predictive performance of LQTS categorization based on mutation location/function. Score performance was tested using Harrell's C-index. RESULTS: A total of 917 subjects were classified as LQT1, 838 as LQT2, and 270 as LQT3. The identification of a pathogenic variant occurred in 99% with CADD, 92% with SIFT, 100% with REVEL, and 86% with PolyPhen-2. However, none of the genetic scores correlated with the risk of CE (Harrell's C-index: CADD = 0.50, SIFT = 0.51, REVEL = 0.50, and PolyPhen-2 = 0.52) or LTE (Harrell's C-index: CADD = 0.50, SIFT = 0.53, REVEL = 0.54, and PolyPhen-2 = 0.52). In contrast, high-risk mutation categorization based on location/function was a powerful independent predictor of CE (HR = 1.88; p < .001) and LTE (HR = 1.89, p < .001). CONCLUSION: In congenital LQTS patients, well-established algorithms (CADD, SIFT, REVEL, and PolyPhen-2) were able to identify the majority of the causal variants as pathogenic. However, the scores did not predict clinical outcomes. These results indicate that mutation location/functional assays are essential for accurate interpretation of the risk associated with LQTS mutations.


Subject(s)
Electrocardiography , Long QT Syndrome , Humans , Genotype , Long QT Syndrome/diagnosis , Long QT Syndrome/genetics , Long QT Syndrome/complications
17.
J Am Heart Assoc ; 12(16): e8711, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37581385

ABSTRACT

Background The association of circulating trimethylamine-N-oxide (TMAO) with stroke has received limited attention. To address this gap, we examined the associations of serial measures of plasma TMAO with incident ischemic stroke. Methods and Results We used a prospective cohort design with data pooled from 2 cohorts. The settings were the CHS (Cardiovascular Health Study), a cohort of older adults, and the MESA (Multi-Ethnic Study of Atherosclerosis), both in the United States. We measured plasma concentrations of TMAO at baseline and again during the follow-up using high-performance liquid chromatography and mass spectrometry. We assessed the association of plasma TMAO with incident ischemic stroke using proportional hazards regression adjusted for risk factors. The combined cohorts included 11 785 participants without a history of stroke, on average 73 (CHS) and 62 (MESA) years old at baseline, including 60% (CHS) and 53% (MESA) women. We identified 1031 total incident ischemic strokes during a median 15-year follow-up in the combined cohorts. In multivariable analyses, TMAO was significantly associated with incident ischemic stroke risk (hazard ratios comparing a doubling of TMAO: 1.11 [1.03-1.18], P=0.004). The association was linear over the range of TMAO concentrations and appeared restricted to those without diagnosed coronary heart disease. An association with hemorrhagic stroke was not found. Conclusions Plasma TMAO levels are associated with incident ischemic stroke in a diverse population. Registration URL: https://www.clinicaltrials.gov. Unique identifier: NCT00005133.


Subject(s)
Atherosclerosis , Ischemic Stroke , Stroke , Aged , Female , Humans , Atherosclerosis/diagnosis , Atherosclerosis/epidemiology , Atherosclerosis/complications , Ischemic Stroke/diagnosis , Ischemic Stroke/epidemiology , Ischemic Stroke/complications , Methylamines , Oxides , Prospective Studies , Risk Factors , Stroke/diagnosis , Stroke/epidemiology , United States/epidemiology
18.
bioRxiv ; 2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37461703

ABSTRACT

Background: Polygenic risk scores (PRS) for coronary artery disease (CAD) potentially improve cardiovascular risk prediction. However, their relationship with histopathologic features of CAD has never been examined systematically. Methods: From 4,327 subjects referred to CVPath by the State of Maryland Office Chief Medical Examiner (OCME) for sudden death between 1994 and 2015, 2,455 cases were randomly selected for genotyping. We generated PRS from 291 known CAD risk loci. Detailed histopathologic examination of the coronary arteries was performed in all subjects. The primary study outcome measurements were histopathologic plaque features determining severity of atherosclerosis, including %stenosis, calcification, thin-cap fibroatheromas (TCFA), and thrombotic CAD. Results: After exclusion of cases with insufficient DNA sample quality or with missing data, 954 cases (mean age 48.8±14.7; 75.7% men) remained in the final study cohort. Subjects in the highest PRS quintile exhibited more severe atherosclerosis compared to subjects in the lowest quintile, with greater %stenosis (80.3%±27.0% vs. 50.4%±38.7%; adjusted p<0.001) and a higher frequency of calcification (69.6% vs. 35.8%; adjusted p=0.004) and TCFAs (26.7% vs. 9.5%; adjusted p=0.007). Even after adjustment for traditional CAD risk factors subjects within the highest PRS quintile had higher odds of severe atherosclerosis (i.e., ≥75% stenosis; adjusted OR 3.77; 95%CI 2.10-6.78; p<0.001) and plaque rupture (adjusted OR 4.05; 95%CI 2.26-7.24; p<0.001). Moreover, subjects within the highest quintile had higher odds of CAD-associated cause of death, especially among those aged 50 years and younger (adjusted OR 4.08; 95%CI 2.01-8.30; p<0.001). No associations were observed with plaque erosion. Conclusions: This is the first autopsy study investigating associations between PRS and atherosclerosis severity at the histopathologic level in subjects with sudden death. Our pathological analysis suggests PRS correlates with plaque burden and features of advanced atherosclerosis and may be useful as a method for CAD risk stratification, especially in younger subjects. Highlights: In this autopsy study including 954 subjects within the CVPath Sudden Death Registry, high PRS correlated with plaque burden and atherosclerosis severity.The PRS showed differential associations with plaque rupture and plaque erosion, suggesting different etiologies to these two causes of thrombotic CAD.PRS may be useful for risk stratification, particularly in the young. Further examination of individual risk loci and their association with plaque morphology may help understand molecular mechanisms of atherosclerosis, potentially revealing new therapy targets of CAD. Graphic Abstract: A polygenic risk score, generated from 291 known CAD risk loci, was assessed in 954 subjects within the CVPath Sudden Death Registry. Histopathologic examination of the coronary arteries was performed in all subjects. Subjects in the highest PRS quintile exhibited more severe atherosclerosis as compared to subjects in the lowest quintile, with a greater plaque burden, more calcification, and a higher frequency of plaque rupture.

19.
Heart ; 110(1): 57-64, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37463733

ABSTRACT

OBJECTIVES: Calcific aortic stenosis (AS) is the most common valvular disease in older adults, yet its risk factors remain insufficiently studied in this population. Such studies are necessary to enhance understanding of mechanisms, disease management and therapeutics. METHODS: The Cardiovascular Health Study is a population-based investigation of older adults that completed adjudication of incident AS over long-term follow-up. We evaluated traditional cardiovascular risk factors or disease, as well as novel risk factors from lipid, inflammatory and mineral metabolism pathways, in relation to incident moderate or severe AS (including AS procedures) and clinically significant AS (severe AS, including procedures). RESULTS: Of 5390 participants (age 72.9±5.6 years, 57.6% female, 12.5% black), 287 developed moderate or severe AS, and 175 clinically significant AS, during median follow-up of 13.1 years. After full adjustment, age (HR=1.66 per SD (95% CI=1.45, 1.91)), male sex (HR=1.41 (1.06, 1.87)), diabetes (HR=1.53 (1.10, 2.13)), coronary heart disease (CHD, HR=1.36 (1.01, 1.84)), lipoprotein-associated phospholipase-A2 (LpPLA2) activity (HR=1.21 per SD (1.07, 1.37)) and sCD14 (HR=1.16 per SD (1.01, 1.34)) were associated with incident moderate/severe AS, while black race demonstrated an inverse association (HR=0.40 (0.24, 0.65)), and creatinine-based estimated glomerular filtration rate (eGFRcr) showed a U-shaped relationship. Findings were similar for clinically significant AS, although CHD and sCD14 fell short of significance, but interleukin-(IL) 6 showed a positive association. CONCLUSION: This comprehensive evaluation of risk factors for long-term incidence of AS identified associations for diabetes and prevalent CHD, LpPLA2 activity, sCD14 and IL-6, and eGFRcr. These factors may hold clues to biology, preventive efforts and potential therapeutics for those at highest risk.


Subject(s)
Aortic Valve Stenosis , Diabetes Mellitus , Humans , Male , Female , Aged , Independent Living , Lipopolysaccharide Receptors , Risk Factors , Aortic Valve Stenosis/diagnosis , Aortic Valve Stenosis/epidemiology , Incidence
20.
ERJ Open Res ; 9(2)2023 Mar.
Article in English | MEDLINE | ID: mdl-37020834

ABSTRACT

Rationale: COPD is the third leading cause of death in the United States. Sphingolipids, structural membrane constituents that play a role in cellular stress and apoptosis signalling, may be involved in lung function. Methods: In the Cardiovascular Health Study, a prospective cohort of older adults, we cross-sectionally examined the association of plasma levels of 17 sphingolipid species with lung function and COPD. Multivariable linear regression and logistic regression were used to evaluate associations of sphingolipid concentrations with forced expiratory volume in 1 s (FEV1) and odds of COPD, respectively. Results: Of the 17 sphingolipids evaluated, ceramide-18 (Cer-18) and sphingomyelin-18 (SM-18) were associated with lower FEV1 values (-0.061 L per two-fold higher Cer-18, p=0.001; -0.092 L per two-fold higher SM-18, p=0.002) after correction for multiple testing. Several other associations were significant at a 0.05 level, but did not reach statistical significance after correction for multiple testing. Specifically, Cer-18 and SM-18 were associated with higher odds of COPD (odds ratio per two-fold higher Cer-18 1.29, p=0.03 and SM-18 1.73, p=0.008). Additionally, Cer-16 and SM-16 were associated with lower FEV1 values, and Cer-14, SM-14 and SM-16 with a higher odds of COPD. Conclusion: In this large cross-sectional study, specific ceramides and sphingomyelins were associated with reduced lung function in a population-based study. Future studies are needed to examine whether these biomarkers are associated with longitudinal change in FEV1 within individuals or with incident COPD.

SELECTION OF CITATIONS
SEARCH DETAIL