Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Cell Host Microbe ; 32(3): 304-314.e8, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38417443

ABSTRACT

Several vaccines targeting bacterial pathogens show reduced efficacy upon concurrent viral infection, indicating that a new vaccinology approach is required. To identify antigens for the human pathogen Streptococcus pneumoniae that are effective following influenza infection, we performed CRISPRi-seq in a murine model of superinfection and identified the conserved lafB gene as crucial for virulence. We show that LafB is a membrane-associated, intracellular protein that catalyzes the formation of galactosyl-glucosyl-diacylglycerol, a glycolipid important for cell wall homeostasis. Respiratory vaccination with recombinant LafB, in contrast to subcutaneous vaccination, was highly protective against S. pneumoniae serotypes 2, 15A, and 24F in a murine model. In contrast to standard capsule-based vaccines, protection did not require LafB-specific antibodies but was dependent on airway CD4+ T helper 17 cells. Healthy human individuals can elicit LafB-specific immune responses, indicating LafB antigenicity in humans. Collectively, these findings present a universal pneumococcal vaccine antigen that remains effective following influenza infection.


Subject(s)
Influenza Vaccines , Influenza, Human , Pneumococcal Infections , Superinfection , Humans , Animals , Mice , Streptococcus pneumoniae , Pneumococcal Infections/prevention & control , Pneumococcal Infections/microbiology , Serogroup , Th17 Cells , Influenza, Human/prevention & control , Disease Models, Animal , Pneumococcal Vaccines , Antigens, Bacterial/genetics , Antibodies, Bacterial
2.
EMBO Mol Med ; 16(1): 93-111, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38177534

ABSTRACT

Antimicrobial resistance is a global problem, rendering conventional treatments less effective and requiring innovative strategies to combat this growing threat. The tripartite AcrAB-TolC efflux pump is the dominant constitutive system by which Enterobacterales like Escherichia coli and Klebsiella pneumoniae extrude antibiotics. Here, we describe the medicinal chemistry development and drug-like properties of BDM91288, a pyridylpiperazine-based AcrB efflux pump inhibitor. In vitro evaluation of BDM91288 confirmed it to potentiate the activity of a panel of antibiotics against K. pneumoniae as well as revert clinically relevant antibiotic resistance mediated by acrAB-tolC overexpression. Using cryo-EM, BDM91288 binding to the transmembrane region of K. pneumoniae AcrB was confirmed, further validating the mechanism of action of this inhibitor. Finally, proof of concept studies demonstrated that oral administration of BDM91288 significantly potentiated the in vivo efficacy of levofloxacin treatment in a murine model of K. pneumoniae lung infection.


Subject(s)
Anti-Bacterial Agents , Escherichia coli Proteins , Animals , Mice , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/pharmacology , Klebsiella pneumoniae/metabolism , Escherichia coli , Multidrug Resistance-Associated Proteins/metabolism , Multidrug Resistance-Associated Proteins/pharmacology
3.
J Leukoc Biol ; 115(3): 463-475, 2024 02 23.
Article in English | MEDLINE | ID: mdl-37837383

ABSTRACT

Pneumonia caused by Streptococcus pneumoniae is a leading cause of death worldwide. A growing body of evidence indicates that the successful treatment of bacterial infections results from synergy between antibiotic-mediated direct antibacterial activity and the host's immune defenses. However, the mechanisms underlying the protective immune responses induced by amoxicillin, a ß-lactam antibiotic used as the first-line treatment of S. pneumoniae infections, have not been characterized. A better understanding of amoxicillin's effects on host-pathogen interactions might facilitate the development of other treatment options. Given the crucial role of neutrophils in the control of S. pneumoniae infections, we decided to investigate amoxicillin's impact on neutrophil development in a mouse model of pneumococcal superinfection. A single therapeutic dose of amoxicillin almost completely eradicated the bacteria and prevented local and systemic inflammatory responses. Interestingly, in this context, amoxicillin treatment did not impair the emergency granulopoiesis triggered in the bone marrow by S. pneumoniae. Importantly, treatment of pneumonia with amoxicillin was associated with a greater mature neutrophil count in the bone marrow; these neutrophils had specific transcriptomic and proteomic profiles. Furthermore, amoxicillin-conditioned, mature neutrophils in the bone marrow had a less activated phenotype and might be rapidly mobilized in peripheral tissues in response to systemic inflammation. Thus, by revealing a novel effect of amoxicillin on the development and functions of bone marrow neutrophils during S. pneumoniae pneumonia, our findings provide new insights into the impact of amoxicillin treatment on host immune responses.


Subject(s)
Pneumococcal Infections , Pneumonia, Pneumococcal , Mice , Animals , Pneumonia, Pneumococcal/drug therapy , Neutrophils , Amoxicillin/pharmacology , Amoxicillin/therapeutic use , Bone Marrow , Lung , Proteomics , Streptococcus pneumoniae , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Pneumococcal Infections/drug therapy , Pneumococcal Infections/microbiology
4.
Infect Immun ; 89(9): e0073420, 2021 08 16.
Article in English | MEDLINE | ID: mdl-33820816

ABSTRACT

Along with respiratory tract disease per se, viral respiratory infections can also cause extrapulmonary complications with a potentially critical impact on health. In the present study, we used an experimental model of influenza A virus (IAV) infection to investigate the nature and outcome of the associated gut disorders. In IAV-infected mice, the signs of intestinal injury and inflammation, altered gene expression, and compromised intestinal barrier functions peaked on day 7 postinfection. As a likely result of bacterial component translocation, gene expression of inflammatory markers was upregulated in the liver. These changes occurred concomitantly with an alteration of the composition of the gut microbiota and with a decreased production of the fermentative, gut microbiota-derived products short-chain fatty acids (SCFAs). Gut inflammation and barrier dysfunction during influenza were not attributed to reduced food consumption, which caused in part gut dysbiosis. Treatment of IAV-infected mice with SCFAs was associated with an enhancement of intestinal barrier properties, as assessed by a reduction in the translocation of dextran and a decrease in inflammatory gene expression in the liver. Lastly, SCFA supplementation during influenza tended to reduce the translocation of the enteric pathogen Salmonella enterica serovar Typhimurium and to enhance the survival of doubly infected animals. Collectively, influenza virus infection can remotely impair the gut's barrier properties and trigger secondary enteric infections. The latter phenomenon can be partially countered by SCFA supplementation.


Subject(s)
Enterobacteriaceae Infections/etiology , Fatty Acids, Volatile/biosynthesis , Host-Pathogen Interactions , Influenza A virus/physiology , Influenza, Human/complications , Influenza, Human/virology , Intestinal Mucosa/metabolism , Microbial Interactions , Disease Susceptibility , Dysbiosis , Enterobacteriaceae Infections/metabolism , Host-Pathogen Interactions/immunology , Humans , Influenza, Human/metabolism , Intestinal Mucosa/immunology
5.
Front Immunol ; 11: 2043, 2020.
Article in English | MEDLINE | ID: mdl-32973811

ABSTRACT

Active co-delivery of tumor antigens (Ag) and α-galactosylceramide (α-GalCer), a potent agonist for invariant Natural Killer T (iNKT) cells, to cross-priming CD8α+ dendritic cells (DCs) was previously shown to promote strong anti-tumor responses in mice. Here, we designed a nanoparticle-based vaccine able to target human CD141+ (BDCA3+) DCs - the equivalent of murine CD8α+ DCs - and deliver both tumor Ag (Melan A) and α-GalCer. This nanovaccine was inoculated into humanized mice that mimic the human immune system (HIS) and possess functional iNKT cells and CD8+ T cells, called HIS-CD8/NKT mice. We found that multiple immunizations of HIS-CD8/NKT mice with the nanovaccine resulted in the activation and/or expansion of human CD141+ DCs and iNKT cells and ultimately elicited a potent Melan-A-specific CD8+ T cell response, as determined by tetramer staining and ELISpot assay. Single-cell proteomics further detailed the highly polyfunctional CD8+ T cells induced by the nanovaccine and revealed their predictive potential for vaccine potency. This finding demonstrates for the first time the unique ability of human iNKT cells to license cross-priming DCs in vivo and adds a new dimension to the current strategy of cancer vaccine development.


Subject(s)
Antigens, Neoplasm/immunology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Dendritic Cells/immunology , Dendritic Cells/metabolism , Epitopes, T-Lymphocyte/immunology , Galactosylceramides/administration & dosage , Thrombomodulin/metabolism , Animals , Antigens, Neoplasm/administration & dosage , Biomarkers , Cancer Vaccines/immunology , Humans , Immunophenotyping , Lectins, C-Type/antagonists & inhibitors , Lectins, C-Type/immunology , Mice , Mice, Inbred NOD , Mice, Transgenic , Proteomics/methods , Receptors, Mitogen/antagonists & inhibitors , Receptors, Mitogen/immunology , Single-Cell Analysis , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
6.
Commun Biol ; 3(1): 237, 2020 05 14.
Article in English | MEDLINE | ID: mdl-32409640

ABSTRACT

Like all obligate intracellular pathogens, influenza A virus (IAV) reprograms host cell's glucose and lipid metabolism to promote its own replication. However, the impact of influenza infection on white adipose tissue (WAT), a key tissue in the control of systemic energy homeostasis, has not been yet characterized. Here, we show that influenza infection induces alterations in whole-body glucose metabolism that persist long after the virus has been cleared. We report depot-specific changes in the WAT of IAV-infected mice, notably characterized by the appearance of thermogenic brown-like adipocytes within the subcutaneous fat depot. Importantly, viral RNA- and viral antigen-harboring cells are detected in the WAT of infected mice. Using in vitro approaches, we find that IAV infection enhances the expression of brown-adipogenesis-related genes in preadipocytes. Overall, our findings shed light on the role that the white adipose tissue, which lies at the crossroads of nutrition, metabolism and immunity, may play in influenza infection.


Subject(s)
Adipose Tissue, White/metabolism , Energy Metabolism , Orthomyxoviridae Infections/metabolism , Thermogenesis , Adipose Tissue, Brown/metabolism , Animals , Disease Models, Animal , Humans , Influenza, Human/metabolism , Male , Mice , Mice, Inbred C57BL
7.
Cell Rep ; 30(9): 2934-2947.e6, 2020 03 03.
Article in English | MEDLINE | ID: mdl-32130898

ABSTRACT

Secondary bacterial infections often complicate viral respiratory infections. We hypothesize that perturbation of the gut microbiota during influenza A virus (IAV) infection might favor respiratory bacterial superinfection. Sublethal infection with influenza transiently alters the composition and fermentative activity of the gut microbiota in mice. These changes are attributed in part to reduced food consumption. Fecal transfer experiments demonstrate that the IAV-conditioned microbiota compromises lung defenses against pneumococcal infection. In mechanistic terms, reduced production of the predominant short-chain fatty acid (SCFA) acetate affects the bactericidal activity of alveolar macrophages. Following treatment with acetate, mice colonized with the IAV-conditioned microbiota display reduced bacterial loads. In the context of influenza infection, acetate supplementation reduces, in a free fatty acid receptor 2 (FFAR2)-dependent manner, local and systemic bacterial loads. This translates into reduced lung pathology and improved survival rates of double-infected mice. Lastly, pharmacological activation of the SCFA receptor FFAR2 during influenza reduces bacterial superinfection.


Subject(s)
Dysbiosis/microbiology , Fatty Acids, Volatile/biosynthesis , Gastrointestinal Tract/microbiology , Influenza, Human/microbiology , Lung/microbiology , Pneumococcal Infections/complications , Superinfection/complications , Superinfection/microbiology , Acetates/pharmacology , Animals , Dysbiosis/complications , Dysbiosis/virology , Feeding Behavior , Gastrointestinal Microbiome/drug effects , Gastrointestinal Tract/drug effects , Humans , Macrophages, Alveolar/drug effects , Macrophages, Alveolar/microbiology , Macrophages, Alveolar/pathology , Mice, Inbred C57BL , Pneumococcal Infections/microbiology , Pneumococcal Infections/virology , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/metabolism , Respiratory Tract Infections/microbiology
8.
Mucosal Immunol ; 13(1): 128-139, 2020 01.
Article in English | MEDLINE | ID: mdl-31628425

ABSTRACT

Interleukin-7 (IL-7) is a critical cytokine in B- and T-lymphocyte development and maturation. Recent evidence suggests that IL-7 is a preferential homeostatic and survival factor for RORγt+ innate T cells such as natural killer T (NKT) cells, γδT cells, and mucosal-associated invariant T (MAIT) cells in the periphery. Given the important contribution of these populations in antibacterial immunity at barrier sites, we questioned whether IL-7 could be instrumental in boosting the local host immune response against respiratory bacterial infection. By using a cytokine-monoclonal antibody approach, we illustrated a role for topical IL-7 delivery in increasing the pool of RORγt+ IL-17A-producing innate T cells. Prophylactic IL-7 treatment prior to Streptococcus pneumoniae infection led to better bacterial containment, a process associated with increased neutrophilia and that depended on γδT cells and IL-17A. Last, combined delivery of IL-7 and α-galactosylceramide (α-GalCer), a potent agonist for invariant NKT (iNKT) cells, conferred an almost total protection in terms of survival, an effect associated with enhanced IL-17 production by innate T cells and neutrophilia. Collectively, we provide a proof of concept that IL-7 enables fine-tuning of innate T- cell functions. This might pave the way for considering IL-7 as an innovative biotherapeutic against bacterial infection.


Subject(s)
Immunotherapy/methods , Interleukin-17/metabolism , Interleukin-7/metabolism , Natural Killer T-Cells/metabolism , Neutrophils/immunology , Pneumococcal Infections/immunology , Respiratory Tract Infections/immunology , Streptococcus pneumoniae/physiology , Animals , Antibodies, Blocking/metabolism , Cells, Cultured , Galactosylceramides/immunology , Humans , Immunity, Innate , Interleukin-7/administration & dosage , Mice , Mice, Inbred C57BL , Mice, Knockout , Natural Killer T-Cells/immunology , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism
9.
J Lipid Res ; 60(11): 1892-1904, 2019 11.
Article in English | MEDLINE | ID: mdl-31484693

ABSTRACT

The glycosphingolipid, α-galactosylceramide (αGalCer), when presented by CD1d on antigen-presenting cells, efficiently activates invariant natural killer T (iNKT) cells. Thereby, it modulates immune responses against tumors, microbial and viral infections, and autoimmune diseases. Recently, the production of αGalCer by Bacteroidetes from the human gut microbiome was elucidated. Using hydrophilic interaction chromatography coupled to MS2, we screened murine intestinal tracts to identify and quantify αGalCers, and we investigated the αGalCer response to different dietary and physiologic conditions. In both the cecum and the colon of mice, we found 1-15 pmol of αGalCer per milligram of protein; in contrast, mice lacking microbiota (germ-free mice) and fed identical diet did not harbor αGalCer. The identified αGalCer contained a ß(R)-hydroxylated hexadecanoyl chain N-linked to C18-sphinganine, which differed from what has been reported with Bacteroides fragilis Unlike ß-anomeric structures, but similar to αGalCers from B. fragilis, the synthetic form of the murine αGalCer induced iNKT cell activation in vitro. Last, we observed a decrease in αGalCer production in mice exposed to conditions that alter the composition of the gut microbiota, including Western type diet, colitis, and influenza A virus infection. Collectively, this study suggests that αGalCer is produced by commensals in the mouse intestine and reveals that stressful conditions causing dysbiosis alter its synthesis. The consequences of this altered production on iNKT cell-mediated local and systemic immune responses are worthy of future studies.


Subject(s)
Bacteroides fragilis/chemistry , Bacteroides fragilis/immunology , Diet , Galactosylceramides/immunology , Inflammation/immunology , Intestine, Large/immunology , Intestine, Large/metabolism , Animals , Galactosylceramides/genetics , Inflammation/microbiology , Intestine, Large/microbiology , Mice , Mice, Inbred Strains
10.
PLoS Biol ; 17(3): e3000169, 2019 03.
Article in English | MEDLINE | ID: mdl-30822302

ABSTRACT

CD1d-restricted invariant natural killer T (iNKT) cells represent a heterogeneous population of lipid-reactive T cells that are involved in many immune responses, mediated through T-cell receptor (TCR)-dependent and/or independent activation. Although numerous microbial lipid antigens (Ags) have been identified, several lines of evidence have suggested the existence of relevant Ags of endogenous origin. However, the identification of their precise nature as well as the molecular mechanisms involved in their generation are still highly controversial and ill defined. Here, we identified two mammalian gangliosides-namely monosialoganglioside GM3 and disialoganglioside GD3-as endogenous activators for mouse iNKT cells. These glycosphingolipids are found in Toll-like receptor-stimulated dendritic cells (DC) as several species varying in their N-acyl fatty chain composition. Interestingly, their ability to activate iNKT cells is highly dependent on the ceramide backbone structure. Thus, both synthetic GM3 and GD3 comprising a d18:1-C24:1 ceramide backbone were able to activate iNKT cells in a CD1d-dependent manner. GM3 and GD3 are not directly recognized by the iNKT TCR and required the Ag presenting cell intracellular machinery to reveal their antigenicity. We propose a new concept in which iNKT cells can rapidly respond to pre-existing self-molecules after stress-induced structural changes in CD1d-expressing cells. Moreover, these gangliosides conferred partial protection in the context of bacterial infection. Thus, this report identified new biologically relevant lipid self-Ags for iNKT cells.


Subject(s)
Ceramides/metabolism , Gangliosides/metabolism , Natural Killer T-Cells/metabolism , Toll-Like Receptor 9/metabolism , Animals , Antigens, CD1d/metabolism , Bone Marrow Cells/metabolism , Dendritic Cells/metabolism , G(M3) Ganglioside/metabolism , Glycosphingolipids/metabolism , Male , Mice, Inbred C57BL , Real-Time Polymerase Chain Reaction
11.
Eur J Pharm Sci ; 129: 31-41, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30572107

ABSTRACT

Pneumococcal infections remain a major public health concern worldwide. The currently available vaccines in the market are based on pneumococcal capsular polysaccharides but they still need to be improved to secure an optimal coverage notably in population at risk. To circumvent this, association of virulence pneumococcal proteins to the polysaccharide valencies has been proposed with the hope to observe an additive - if not synergistic - protective effect. Along this line, the use of the highly conserved and ubiquitous pneumococcal surface adhesin A (PsaA) as a protein carrier for a synthetic pneumococcal oligosaccharide is demonstrated herein for the first time. A tetrasaccharide mimicking functional antigenic determinants from the S. pneumoniae serotype 14 capsular polysaccharide (Pn14TS) was chemically synthesised. The mature PsaA (mPsaA) was expressed in E. coli and purified using affinity chromatography. The Pn14PS was conjugated to mPsaA using maleimide-thiol coupling chemistry to obtain mPsaA-Pn14PS conjugate (protein/sugar molar ratio: 1/5.4). The mPsaA retained the structural conformation after the conjugation and lyophilisation. The prepared glycoconjugate adjuvanted with α-galactosylceramide, a potent activator of invariant Natural Killer T cells, was tested in mice for its immunological response upon subcutaneous injection in comparison with mPsaA alone and a model BSA conjugate (BSA-Pn14PS, used here as a control). Mice immunised with the mPsaA-Pn14TS produced a robust IgG response against mPsaA and against the capsular polysaccharide from pneumococcal serotype 14. These data provide the basis for novel pneumococcal vaccine development.


Subject(s)
Bacterial Proteins/chemistry , Glycoconjugates/chemistry , Pneumococcal Vaccines/chemistry , Animals , Bacterial Proteins/immunology , Escherichia coli/immunology , Female , Galactosylceramides/chemistry , Glycoconjugates/immunology , Immunization/methods , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Pneumococcal Infections/immunology , Pneumococcal Vaccines/immunology , Streptococcus pneumoniae/immunology , Vaccination/methods
12.
Vaccine ; 37(4): 652-663, 2019 01 21.
Article in English | MEDLINE | ID: mdl-30583910

ABSTRACT

Bacterial flagellin activates the innate immune system and ultimately the adaptive immune system through a Toll-like receptor 5 (TLR5)-dependent signaling mechanism. Given that TLR5 is widely distributed in epithelia, flagellin is currently being developed as a mucosal adjuvant. Flagellin FliC from Salmonella enterica has four domains: the conserved D0 and D1 domains and the hypervariable D2 and D3 domains. The deletion of D3 and partial deletion of D2 in the recombinant FliCΔ174-400 strongly impairs flagellin's intrinsic antigenicity but does not affect the TLR5-dependent immunostimulation activity, i.e., the capacity to promote innate responses and adaptive responses to co-administered antigens. Here, we describe the development of novel recombinant flagellins with various deletions encompassing all of D2 and D3, and part of D1. Most of the recombinant molecules conserved an α-helical secondary structure that was as resistant to heat denaturation as the native protein. Whereas the recombinant flagellins' ability to trigger TLR5 varied markedly in vitro, most gave equivalent in vivo TLR5-dependent innate immune responses following intranasal administration of 2 µg of flagellin to mice. Concordantly, the recombinant flagellins were also valuable respiratory adjuvants for eliciting antibody responses to the foreign antigen ovalbumin, although their intrinsic antigenicity was decreased compared to the native flagellin and not increased compared to FliCΔ174-400. Our results show that the additional deletions of D2 and the distal part of D1 of FliCΔ174-400 does not impact on antigenicity and does not significantly modify the immunostimulatory adjuvant activity. Altogether, this study generated a novel set of recombinant flagellin that constitutes a portfolio of TLR5-dependent candidate adjuvants for vaccination.


Subject(s)
Adjuvants, Immunologic/genetics , Flagellin/genetics , Flagellin/immunology , Recombinant Proteins/immunology , Animals , Immunity, Innate , Immunity, Mucosal , Mice , Mice, Inbred C57BL , Models, Molecular , Salmonella enterica/genetics , Salmonella enterica/immunology , Sequence Deletion , Signal Transduction , Toll-Like Receptor 5/immunology
13.
PLoS Pathog ; 14(10): e1007360, 2018 10.
Article in English | MEDLINE | ID: mdl-30372491

ABSTRACT

Secondary bacterial infections contribute to the excess morbidity and mortality of influenza A virus (IAV) infection. Disruption of lung integrity and impaired antibacterial immunity during IAV infection participate in colonization and dissemination of the bacteria out of the lungs. One key feature of IAV infection is the profound alteration of lung myeloid cells, characterized by the recruitment of deleterious inflammatory monocytes. We herein report that IAV infection causes a transient decrease of lung conventional dendritic cells (cDCs) (both cDC1 and cDC2) peaking at day 7 post-infection. While triggering emergency monopoiesis, IAV transiently altered the differentiation of cDCs in the bone marrow, the cDC1-biaised pre-DCs being particularly affected. The impaired cDC differentiation during IAV infection was independent of type I interferons (IFNs), IFN-γ, TNFα and IL-6 and was not due to an intrinsic dysfunction of cDC precursors. The alteration of cDC differentiation was associated with a drop of local and systemic production of Fms-like tyrosine kinase 3 ligand (Flt3-L), a critical cDC differentiation factor. Overexpression of Flt3-L during IAV infection boosted the cDC progenitors' production in the BM, replenished cDCs in the lungs, decreased inflammatory monocytes' infiltration and lowered lung damages. This was associated with partial protection against secondary pneumococcal infection, as reflected by reduced bacterial dissemination and prolonged survival. These findings highlight the impact of distal viral infection on cDC genesis in the BM and suggest that Flt3-L may have potential applications in the control of secondary infections.


Subject(s)
Dendritic Cells/immunology , Influenza A virus/immunology , Lung/immunology , Membrane Proteins/immunology , Orthomyxoviridae Infections/virology , Pneumococcal Infections/immunology , Superinfection/immunology , Animals , Cells, Cultured , Cytokines/metabolism , Dendritic Cells/microbiology , Dendritic Cells/virology , Lung/microbiology , Lung/virology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Orthomyxoviridae Infections/complications , Pneumococcal Infections/microbiology , Pneumococcal Infections/virology , Receptor, Interferon alpha-beta/physiology , Streptococcus pneumoniae/immunology
14.
Infect Immun ; 86(7)2018 07.
Article in English | MEDLINE | ID: mdl-29661933

ABSTRACT

Severe bacterial (pneumococcal) infections are commonly associated with influenza and are significant contributors to the excess morbidity and mortality of influenza. Disruption of lung tissue integrity during influenza participates in bacterial pulmonary colonization and dissemination out of the lungs. Interleukin-22 (IL-22) has gained considerable interest in anti-inflammatory and anti-infection immunotherapy over the last decade. In the current study, we investigated the effect of exogenous IL-22 delivery on the outcome of pneumococcal superinfection postinfluenza. Our data show that exogenous treatment of influenza virus-infected mice with recombinant IL-22 reduces bacterial dissemination out of the lungs but is without effect on pulmonary bacterial burden. Reduced systemic bacterial dissemination was linked to reinforced pulmonary barrier functions, as revealed by total protein measurement in the bronchoalveolar fluids, intratracheal fluorescein isothiocyanate-dextran tracking, and histological approaches. We describe an IL-22-specific gene signature in the lung tissue of influenza A virus (IAV)-infected (and naive) mice that might explain the observed effects. Indeed, exogenous IL-22 modulates the gene expression profile in a way that suggests reinforcement of tissue integrity. Our results open the way to alternative approaches for limiting postinfluenza bacterial superinfection, particularly, systemic bacterial invasion.


Subject(s)
Interleukins/therapeutic use , Lung/immunology , Orthomyxoviridae Infections/drug therapy , Pneumococcal Infections/immunology , Superinfection/immunology , Animals , Humans , Immunotherapy , Liver/metabolism , Lung/metabolism , Lung/microbiology , Lung/pathology , Male , Mice , Mice, Inbred C57BL , Orthomyxoviridae Infections/immunology , Transcriptome , Interleukin-22
15.
Cancer Res ; 78(1): 195-204, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29070614

ABSTRACT

The protumoral activity of γδT17 cells has recently emerged in a wide variety of solid malignancies, including breast cancer. These cells exert their detrimental functions by promoting tumor growth, angiogenesis, and subsequent metastasis development. However, the intratumoral factors that regulate the biology of γδT17cells within the tumor microenvironment are less well understood. Here, using two experimental models of breast cancer, we reinforced the concept that tumor-infiltrating γδT17 cells are endowed with protumoral functions, which promote tumor progression and metastasis development. More importantly, we demonstrated a critical role for type I IFN signaling in controlling the preferential accumulation in the tumor bed of a peculiar subset of γδT17 cells displaying a CD27- CD3bright phenotype (previously associated with the invariant Vγ6Vδ1+ TCR). Interestingly, this effect was indirect and partially relied on the IFNAR1-dependent control of IL7 secretion, a factor that triggers proliferation and activating functions of deleterious γδT17 cells. Our work therefore identifies a key role of the type I IFN/IL7 axis in the regulation of intratumoral γδT17-cell functions and in the development of primary breast tumor growth and metastasis.Significance: Tumor-derived IL7 can represent a therapeutic target to prevent accumulation of immune cells endowed with potent protumoral activities. Cancer Res; 78(1); 195-204. ©2017 AACR.


Subject(s)
Breast Neoplasms/immunology , Interleukin-17/metabolism , Interleukin-7/metabolism , Receptor, Interferon alpha-beta/metabolism , T-Lymphocyte Subsets/immunology , Animals , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Female , Interleukin-17/genetics , Lymphocytes, Tumor-Infiltrating/metabolism , Lymphocytes, Tumor-Infiltrating/pathology , Mice, Inbred BALB C , Mice, Inbred C57BL , Receptor, Interferon alpha-beta/genetics , Receptor, Interferon alpha-beta/immunology , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Signal Transduction , T-Lymphocyte Subsets/metabolism , Tumor Necrosis Factor Receptor Superfamily, Member 7/genetics , Tumor Necrosis Factor Receptor Superfamily, Member 7/metabolism
16.
Oncoimmunology ; 6(9): e1339855, 2017.
Article in English | MEDLINE | ID: mdl-28932640

ABSTRACT

Vaccines designed to abrogate the tolerance of tumor self-antigens and amplify cytotoxic CD8+ T cells (CTLs) have promise for the treatment of cancer. Type I natural killer (NKT) cells have attracted considerable interest in the cancer therapy field. In the current study, we have exploited the unique ability of NKT cells to serve as T-helper cells to license dendritic cells (DCs) for cross priming with the aim to generate efficient CTL antitumor responses. To this end, we designed a nanoparticle-based vaccine to target cross-priming DCs via the Clec9a endocytic pathway. Our results showed for the first time that simultaneous co-delivery of the NKT agonist α-galactosylceramide and tumor self-antigens (Trp2 and gp100) to CD8α+ DCs promotes strong antitumor responses in prophylactic and therapeutic settings (advanced solid tumor model in the mouse). We attributed the vaccine's therapeutic effects to NKT cells (but not to T-helper lymphocytes) and CD8+ T cells. Efficacy was correlated with an elevated ratio between tumor antigen-specific CD8+ T cells and regulatory CD4+ T lymphocytes within the tumor. The nanoparticle-based vaccine actively targeted human CLEC9A-expressing BDCA3+ DCs - the equivalent of murine cross-priming CD8α+ DCs - and induced a strong expansion of effector memory tumor self-antigen (Melan -A)-specific CD8+ T cells from peripheral blood mononuclear cells sourced from healthy donors and melanoma patients. Together, our result shed light on novel therapeutic approaches for controlling tumor development.

SELECTION OF CITATIONS
SEARCH DETAIL