Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Language
Publication year range
1.
Biol Res ; 56(1): 23, 2023 May 10.
Article in English | MEDLINE | ID: mdl-37161592

ABSTRACT

BACKGROUND: Recessive Dystrophic Epidermolysis Bullosa (RDEB) is a rare inherited skin disease caused by variants in the COL7A1 gene, coding for type VII collagen (C7), an important component of anchoring fibrils in the basement membrane of the epidermis. RDEB patients suffer from skin fragility starting with blister formation and evolving into chronic wounds, inflammation and skin fibrosis, with a high risk of developing aggressive skin carcinomas. Restricted therapeutic options are limited by the lack of in vitro models of defective wound healing in RDEB patients. RESULTS: In order to explore a more efficient, non-invasive in vitro model for RDEB studies, we obtained patient fibroblasts derived from discarded dressings) and examined their phenotypic features compared with fibroblasts derived from non-injured skin of RDEB and healthy-donor skin biopsies. Our results demonstrate that fibroblasts derived from RDEB chronic wounds (RDEB-CW) displayed characteristics of senescent cells, increased myofibroblast differentiation, and augmented levels of TGF-ß1 signaling components compared to fibroblasts derived from RDEB acute wounds and unaffected RDEB skin as well as skin from healthy-donors. Furthermore, RDEB-CW fibroblasts exhibited an increased pattern of inflammatory cytokine secretion (IL-1ß and IL-6) when compared with RDEB and control fibroblasts. Interestingly, these aberrant patterns were found specifically in RDEB-CW fibroblasts independent of the culturing method, since fibroblasts obtained from dressing of acute wounds displayed a phenotype more similar to fibroblasts obtained from RDEB normal skin biopsies. CONCLUSIONS: Our results show that in vitro cultured RDEB-CW fibroblasts maintain distinctive cellular and molecular characteristics resembling the inflammatory and fibrotic microenvironment observed in RDEB patients' chronic wounds. This work describes a novel, non-invasive and painless strategy to obtain human fibroblasts chronically subjected to an inflammatory and fibrotic environment, supporting their use as an accessible model for in vitro studies of RDEB wound healing pathogenesis. As such, this approach is well suited to testing new therapeutic strategies under controlled laboratory conditions.


Subject(s)
Epidermolysis Bullosa Dystrophica , Humans , Epidermolysis Bullosa Dystrophica/genetics , Fibroblasts , Bandages , Cell Differentiation , Collagen Type VII/genetics
2.
Biol. Res ; 56: 23-23, 2023. ilus, graf, tab
Article in English | LILACS | ID: biblio-1513736

ABSTRACT

BACKGROUND: Recessive Dystrophic Epidermolysis Bullosa (RDEB) is a rare inherited skin disease caused by variants in the COL7A1 gene, coding for type VII collagen (C7), an important component of anchoring fibrils in the basement membrane of the epidermis. RDEB patients suffer from skin fragility starting with blister formation and evolving into chronic wounds, inflammation and skin fibrosis, with a high risk of developing aggressive skin carcinomas. Restricted therapeutic options are limited by the lack of in vitro models of defective wound healing in RDEB patients. RESULTS: In order to explore a more efficient, non-invasive in vitro model for RDEB studies, we obtained patient fibroblasts derived from discarded dressings) and examined their phenotypic features compared with fibroblasts derived from non-injured skin of RDEB and healthy-donor skin biopsies. Our results demonstrate that fibroblasts derived from RDEB chronic wounds (RDEB-CW) displayed characteristics of senescent cells, increased myofibroblast differentiation, and augmented levels of TGF-ß1 signaling components compared to fibroblasts derived from RDEB acute wounds and unaffected RDEB skin as well as skin from healthy-donors. Furthermore, RDEB-CW fibroblasts exhibited an increased pattern of inflammatory cytokine secretion (IL-1ß and IL-6) when compared with RDEB and control fibroblasts. Interestingly, these aberrant patterns were found specifically in RDEB-CW fibroblasts independent of the culturing method, since fibroblasts obtained from dressing of acute wounds displayed a phenotype more similar to fibroblasts obtained from RDEB normal skin biopsies. CONCLUSIONS: Our results show that in vitro cultured RDEB-CW fibroblasts maintain distinctive cellular and molecular characteristics resembling the inflammatory and fibrotic microenvironment observed in RDEB patients' chronic wounds. This work describes a novel, non-invasive and painless strategy to obtain human fibroblasts chronically subjected to an inflammatory and fibrotic environment, supporting their use as an accessible model for in vitro studies of RDEB wound healing pathogenesis. As such, this approach is well suited to testing new therapeutic strategies under controlled laboratory conditions.


Subject(s)
Humans , Epidermolysis Bullosa Dystrophica/genetics , Bandages , Cell Differentiation , Collagen Type VII/genetics , Fibroblasts
3.
Matrix Biol ; 111: 226-244, 2022 08.
Article in English | MEDLINE | ID: mdl-35779741

ABSTRACT

Lack of type VII collagen (C7) disrupts cellular proteostasis yet the mechanism remains undescribed. By studying the relationship between C7 and the extracellular matrix (ECM)-associated proteins thrombospondin-1 (TSP1), type XII collagen (C12) and tissue transglutaminase (TGM2) in primary human dermal fibroblasts from multiple donors with or without the genetic disease recessive dystrophic epidermolysis bullosa (RDEB) (n=31), we demonstrate that secretion of each of these proteins is increased in the presence of C7. In dermal fibroblasts isolated from patients with RDEB, where C7 is absent or defective, association with the COPII outer coat protein SEC31 and ultimately secretion of each of these ECM-associated proteins is reduced and intracellular levels are increased. In RDEB fibroblasts, overall collagen secretion (as determined by the levels of hydroxyproline in the media) is unchanged while traffic from the ER to Golgi of TSP1, C12 and TGM2 occurs in a type I collagen (C1) dependent manner. In normal fibroblasts association of TSP1, C12 and TGM2 with the ER exit site transmembrane protein Transport ANd Golgi Organization-1 (TANGO1) as determined by proximity ligation assays, requires C7. In the absence of wild-type C7, or when ECM-associated proteins are overexpressed, C1 proximity and intracellular levels increase resulting in elevated cellular stress responses and elevated TGFß signaling. Collectively, these data demonstrate a role for C7 in loading COPII vesicle cargo and provides a mechanism for disrupted proteostasis, elevated cellular stress and increased TGFß signaling in patients with RDEB. Furthermore, our data point to a threshold of cargo loading that can be exceeded with increased protein levels leading to pathological outcomes in otherwise normal cells.


Subject(s)
Epidermolysis Bullosa Dystrophica , Proteostasis , Collagen Type VII/genetics , Collagen Type VII/metabolism , Epidermolysis Bullosa Dystrophica/genetics , Fibroblasts/metabolism , Humans , Transforming Growth Factor beta/metabolism , Transglutaminases/genetics , Transglutaminases/metabolism
4.
Sci Rep ; 10(1): 15064, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32934247

ABSTRACT

Impaired wound healing complicates a wide range of diseases and represents a major cost to healthcare systems. Here we describe the use of discarded wound dressings as a novel, cost effective, accessible, and non-invasive method of isolating viable human cells present at the site of skin wounds. By analyzing 133 discarded wound dressings from 51 patients with the inherited skin-blistering disease epidermolysis bullosa (EB), we show that large numbers of cells, often in excess of 100 million per day, continually infiltrate wound dressings. We show, that the method is able to differentiate chronic from acute wounds, identifying significant increases in granulocytes in chronic wounds, and we show that patients with the junctional form of EB have significantly more cells infiltrating their wounds compared with patients with recessive dystrophic EB. Finally, we identify subsets of granulocytes and T lymphocytes present in all wounds paving the way for single cell profiling of innate and adaptive immune cells with relevance to wound pathologies. In summary, our study delineates findings in EB that have potential relevance for all chronic wounds, and presents a method of cellular isolation that has wide reaching clinical application.


Subject(s)
Bandages , Cell Separation , Epidermolysis Bullosa , Granulocytes , T-Lymphocytes , Wound Healing , Acute Disease , Adult , Chronic Disease , Epidermolysis Bullosa/metabolism , Epidermolysis Bullosa/pathology , Epidermolysis Bullosa/therapy , Granulocytes/metabolism , Granulocytes/pathology , Humans , Male , T-Lymphocytes/metabolism , T-Lymphocytes/pathology
6.
Int J Dermatol ; 53(8): 985-90, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24899116

ABSTRACT

BACKGROUND: Recessive dystrophic epidermolysis bullosa (RDEB) is a severe genetic skin blistering disorder caused by mutations in the gene COL7A1 encoding type VII collagen. Most of the patients' clinical severity depends in part on the nature and location of the mutations, ranging from the mild form described as RDEBother-generalized (RDEB-O) to the more aggressive phenotype described as RDEBsevere-generalized (RDEB-sev gen). However, interfamilial and interindividual differences in subjects with identical COL7A1 mutations suggest the presence of modifier elements, which may influence severity. There is a single nucleotide polymorphism (SNP) at the promoter of the MMP1 gene-encoding matrix metalloproteinase type 1, which has been studied as a genetic disease modifier in different patient cohorts with different findings. METHODS: We tested the SNP in 30 patients with RDEB and 130 controls whose four grandparents were born in northeastern Mexico. Patients were clinically classified as RDEB-sev gen and RDEB-O by three dermatologists. The SNPStats, RXC, and SPSS software were used to perform statistical testing. RESULTS: The allele frequencies for 2G were 0.607, 0.562, and 0.642 for RDEB-O, RDEB-sev gen, and the control group, respectively. When the genotype frequencies were compared, there was no significant difference between RDEB-sev gen (OR = 0.38, CI 95% 0.12-1.21), RDEB-O (OR = 1.03, CI 95% 0.21-4.96), and the control group. CONCLUSION: We found no significant association in relation to the severity of the study subjects and the SNP at the promoter of the MMP1 gene.


Subject(s)
Epidermolysis Bullosa Dystrophica/genetics , Matrix Metalloproteinase 1/genetics , Promoter Regions, Genetic , Adolescent , Adult , Case-Control Studies , Child , Child, Preschool , Gene Frequency , Genotype , Humans , Mexico , Middle Aged , Polymorphism, Single Nucleotide , Severity of Illness Index , Young Adult
7.
Am J Hum Genet ; 82(1): 73-80, 2008 Jan.
Article in English | MEDLINE | ID: mdl-18179886

ABSTRACT

Familial primary localized cutaneous amyloidosis (FPLCA) is an autosomal-dominant disorder associated with chronic skin itching and deposition of epidermal keratin filament-associated amyloid material in the dermis. FPLCA has been mapped to 5p13.1-q11.2, and by candidate gene analysis, we identified missense mutations in the OSMR gene, encoding oncostatin M-specific receptor beta (OSMRbeta), in three families. OSMRbeta is a component of the oncostatin M (OSM) type II receptor and the interleukin (IL)-31 receptor, and cultured FPLCA keratinocytes showed reduced activation of Jak/STAT, MAPK, and PI3K/Akt pathways after OSM or IL-31 cytokine stimulation. The pathogenic amino acid substitutions are located within the extracellular fibronectin type III-like (FNIII) domains, regions critical for receptor dimerization and function. OSM and IL-31 signaling have been implicated in keratinocyte cell proliferation, differentiation, apoptosis, and inflammation, but our OSMR data in individuals with FPLCA represent the first human germline mutations in this cytokine receptor complex and provide new insight into mechanisms of skin itching.


Subject(s)
Amyloidosis, Familial/genetics , Oncostatin M Receptor beta Subunit/genetics , Amino Acid Sequence , Amyloidosis, Familial/pathology , Brazil , Cell Culture Techniques , Chromosomes, Human, Pair 5 , DNA Mutational Analysis , Female , Genes, Dominant , Humans , Keratinocytes , Male , Molecular Sequence Data , Mutation, Missense , Oncostatin M Receptor beta Subunit/chemistry , Pedigree , Sequence Homology , South Africa , United Kingdom
SELECTION OF CITATIONS
SEARCH DETAIL