Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters











Publication year range
1.
iScience ; 26(10): 107719, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37674984

ABSTRACT

Little is known about the effects of high-fat diet (HFD)-induced obesity on resident colonic lamina propria (LP) macrophages (LPMs) function and metabolism. Here, we report that obesity and diabetes resulted in increased macrophage infiltration in the colon. These macrophages exhibited the residency phenotype CX3CR1hiMHCIIhi and were CD4-TIM4-. During HFD, resident colonic LPM exhibited a lipid metabolism gene expression signature that overlapped that used to define lipid-associated macrophages (LAMs). Via single-cell RNA sequencing, we identified a sub-cluster of macrophages, increased in HFD, that were responsible for the LAM signature. Compared to other macrophages in the colon, these cells were characterized by elevated glycolysis, phagocytosis, and efferocytosis signatures. CX3CR1hiMHCIIhi colonic resident LPMs had fewer lipid droplets (LDs) and decreased triacylglycerol (TG) content compared to equivalent cells in lean mice and exhibited increased phagocytic capacity, suggesting that HFD induces adaptive responses in LPMs to limit bacterial translocation.

2.
J Photochem Photobiol B ; 209: 111918, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32531690

ABSTRACT

Folic acid (FA) regulates metabolic activities essential to the human body. FA receptor (FR) overexpression has been reported for many cancers, but there are still few or conflicting data about FRs in breast cancer cells. Quantum dots (QDs) have arisen as tools to elucidate aspects on FRs, due to their unique physicochemical properties. Herein, QDs conjugated to FA were explored to study the internalization and recycling of FRs in breast cancer cells, using HeLa as an out-group control. QDs were covalently conjugated to FA under different conditions. The best conjugate was applied to study FRs in HeLa, MCF7, MDA-MB231, and T47D cells applying confocal microscopy and flow cytometry analyses. The conjugation efficiency and specificity were evaluated, respectively, using fluorescence correlation spectroscopy (FCS) and saturation assays. FCS confirmed the effectiveness of the conjugation. HeLa and T47D had/internalized a higher amount of FRs (95% and 90% of labeling, respectively) than MDA-MB231 cells (68%). MCF7 cells seem to have very low functional FRs (3%). Saturation assays proved the specificity of QD-FA conjugates and suggested that FR recycling rate is low in the majority of cells studied, except for T47D. QD-FA conjugates were successfully developed. Therapies targeting FRs may be more effective for HeLa, T47D, and MDA-MB231.


Subject(s)
Breast Neoplasms/metabolism , Endocytosis , Folic Acid/metabolism , Quantum Dots , Receptors, Cell Surface/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Female , Flow Cytometry , Humans , Microscopy, Confocal , Spectrometry, Fluorescence
3.
J Infect Dis ; 221(9): 1542-1553, 2020 04 07.
Article in English | MEDLINE | ID: mdl-31783409

ABSTRACT

BACKGROUND: Liver X receptors (LXRs) are nuclear receptors activated by oxidized lipids and were previously implicated in several metabolic development and inflammatory disorders. Although neutrophils express both LXR-α and LXR-ß, the consequences of their activation, particularly during sepsis, remain unknown. METHODS: We used the model of cecal ligation and puncture (CLP) to investigate the role of LXR activation during sepsis. RESULTS: In this study, we verified that LXR activation reduces neutrophil chemotactic and killing abilities in vitro. Mice treated with LXR agonists showed higher sepsis-induced mortality, which could be associated with reduced neutrophil infiltration at the infectious foci, increased bacteremia, systemic inflammatory response, and multiorgan failure. In contrast, septic mice treated with LXR antagonist showed increased number of neutrophils in the peritoneal cavity, reduced bacterial load, and multiorgan dysfunction. More important, neutrophils from septic patients showed increased ABCA1 messenger ribonucleic acid levels (a marker of LXR activation) and impaired chemotactic response toward CXCL8 compared with cells from healthy individuals. CONCLUSIONS: Therefore, our findings suggest that LXR activation impairs neutrophil functions, which might contribute to poor sepsis outcome.


Subject(s)
Liver X Receptors/metabolism , Neutrophils/pathology , Sepsis/immunology , Sepsis/metabolism , ATP Binding Cassette Transporter 1/metabolism , Adult , Animals , Cecum/microbiology , Cecum/surgery , Disease Models, Animal , Female , Humans , Inflammation , Interleukin-8/metabolism , Ligation , Liver X Receptors/agonists , Male , Mice , Mice, Inbred C57BL , Middle Aged , Multiple Organ Failure/immunology , Multiple Organ Failure/microbiology , Neutrophil Infiltration/immunology , Neutrophils/metabolism , Punctures , Sepsis/microbiology
5.
Inflammation ; 40(6): 2020-2032, 2017 12.
Article in English | MEDLINE | ID: mdl-28780730

ABSTRACT

Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by debilitating pain, cartilage destruction, and loss of joint function. Management of RA includes drugs that target NF-κB and downstream cytokine production. Therefore, molecules that act by inhibiting this signaling pathway without the severe side effects of, for instance, corticoids would be suitable therapeutic strategies. Budlein A is a sesquiterpene lactone with antinociceptive and anti-inflammatory properties related to the inhibition of pro-inflammatory cytokines and neutrophil recruitment. In this study, the effect of budlein A was evaluated in antigen-induced arthritis (AIA) in mice. At the 26th day, leukocyte recruitment to the knee joint, knee contents of proteoglycans, blood levels of ALT and AST, stomach tissue myeloperoxidase activity, and RT-qPCR for pro-inflammatory gene mRNA expression in knee joint samples was performed. NF-κB luciferase activity was evaluated in RAW 264.7 macrophages. Budlein A treatment dose-dependently inhibited AIA-induced mechanical hyperalgesia, edema, total leukocytes and neutrophil recruitment, and proteoglycan degradation. Budlein A did not induce gastric or liver damage. Budlein also inhibited AIA-induced Il-33, Tnf, Il-1ß, preproET-1, and Cox-2 mRNA expression. In vitro, budlein reduced TNF- and IL-1ß-induced NF-κB activity in RAW 264.7 macrophages. Altogether, we demonstrate that budlein A ameliorates AIA-induced inflammation and pain by targeting NF-κB. Importantly, budlein A does not induce in vivo side effects, suggesting that it possesses a favorable pre-clinical profile as analgesic and it is a prosperous molecule to be further investigated for the treatment of RA.


Subject(s)
Arthritis, Experimental/drug therapy , Lactones/pharmacology , Sesquiterpenes/pharmacology , Animals , Antigens/adverse effects , Arthritis, Experimental/chemically induced , Cytokines/drug effects , Inflammation/prevention & control , Mice , NF-kappa B/antagonists & inhibitors , Pain/prevention & control , RAW 264.7 Cells
6.
Arthritis Rheumatol ; 67(7): 1751-9, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25779331

ABSTRACT

OBJECTIVE: Infiltration of neutrophils into the joints plays an important role in bone erosion and articular destruction in rheumatoid arthritis (RA). Neutrophil trafficking during inflammation is a process that involves activation of chemotactic receptors. Recent findings suggest that changes in chemotactic receptor patterns could occur in neutrophils under certain inflammatory conditions. The aim of this study was to evaluate the gain of responsiveness of neutrophils to CCL2 in RA patients and to assess the role of CCL2 in driving neutrophil infiltration into the joints. METHODS: Neutrophils were purified from the peripheral blood of patients with RA or from mice with antigen-induced arthritis (AIA). Expression of CCR2 was evaluated using polymerase chain reaction, flow cytometry, and immunofluorescence analyses. In vitro chemotaxis to CCL2 was assayed to evaluate the functional significance of de novo CCR2 expression. The murine AIA model was used to evaluate the in vivo role of CCR2 in neutrophil infiltration into the joints. RESULTS: High CCR2 expression and responsiveness to CCL2 were observed in neutrophils from the blood of patients with early RA and in neutrophils from the blood and bone marrow of mice with AIA. Genetic deficiency or pharmacologic inhibition of CCR2 protected against the infiltration of neutrophils into the joints. This protection was not associated with an impairment of the neutrophil chemotactic ability or CXC chemokine production in the joints. Moreover, adoptive transfer of wild-type mouse neutrophils to CCR2-deficient mice restored neutrophil infiltration and the articular mechanical hyperalgesia associated with joint inflammation. CONCLUSION: These findings suggest that CCR2 is directly involved in the detrimental infiltration of neutrophils into the joints in patients with RA, showing a new inflammatory role of CCR2 during RA flares or active disease.


Subject(s)
Arthritis, Rheumatoid/pathology , Arthritis, Rheumatoid/physiopathology , Cell Movement/physiology , Joints/pathology , Neutrophils/pathology , Receptors, CCR2/metabolism , Animals , Arthritis, Rheumatoid/metabolism , Case-Control Studies , Cell Movement/drug effects , Chemokine CCL2/pharmacology , Chemotaxis/physiology , Disease Models, Animal , Female , Humans , In Vitro Techniques , Joints/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neutrophil Infiltration/drug effects , Neutrophil Infiltration/physiology , Neutrophils/drug effects , Neutrophils/metabolism , Receptors, CCR2/deficiency , Receptors, CCR2/genetics , Severity of Illness Index
7.
PLoS One ; 9(8): e103734, 2014.
Article in English | MEDLINE | ID: mdl-25084278

ABSTRACT

Pathogen recognition and triggering of the inflammatory response following infection in mammals depend mainly on Toll-like and Nod-like receptors. Here, we evaluated the role of Nod1, Nod2 and MyD88-dependent signaling in the chemokine production and neutrophil recruitment to the infectious site during sepsis induced by cecal ligation and puncture (CLP) in C57Bl/6 mice. We demonstrate that Nod1 and Nod2 are not involved in the release of chemokines and recruitment of neutrophils to the infectious site during CLP-induced septic peritonitis because these events were similar in wild-type, Nod1-, Nod2-, Nod1/Nod2- and Rip2-deficient mice. Consequently, the local and systemic bacterial loads were not altered. Accordingly, neither Nod1 nor Nod2 was involved in the production of the circulating cytokines and in the accumulation of leukocytes in the lungs. By contrast, we showed that MyD88-dependent signaling is crucial for the establishment of the local inflammatory response during CLP-induced sepsis. MyD88-deficient mice were susceptible to sepsis because of an impaired local production of chemokines and defective neutrophil recruitment to the infection site. Altogether, these data show that Nod1, Nod2 and Rip2 are not required for local chemokine production and neutrophil recruitment during CLP-induced sepsis, and they reinforce the importance of MyD88-dependent signaling for initiation of a protective host response.


Subject(s)
Myeloid Differentiation Factor 88/metabolism , Nod1 Signaling Adaptor Protein/metabolism , Nod2 Signaling Adaptor Protein/metabolism , Sepsis/metabolism , Animals , Disease Models, Animal , Female , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Myeloid Differentiation Factor 88/genetics , Nod1 Signaling Adaptor Protein/genetics , Nod2 Signaling Adaptor Protein/genetics , Receptor-Interacting Protein Serine-Threonine Kinase 2 , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Sepsis/genetics
8.
J Immunol ; 191(3): 1373-82, 2013 Aug 01.
Article in English | MEDLINE | ID: mdl-23817413

ABSTRACT

Type 1 diabetes enhances susceptibility to infection and favors the sepsis development. In addition, diabetic mice produced higher levels of histamine in several tissues and in the blood after LPS stimulation than nondiabetic mice. In this study, we aimed to explore the role of mast cells (MCs) and histamine in neutrophil migration and, consequently, infection control in diabetic mice with mild sepsis (MS) induced by cecum ligation and puncture. We used female BALB/c, MC-sufficient (WB/B6), MC-deficient (W/W(v)), and NOD mice. Diabetic mice given MS displayed 100% mortality within 24 h, whereas all nondiabetic mice survived for at least 5 d. The mortality rate of diabetic mice was reduced to 57% after the depletion of MC granules with compound 48/80. Moreover, this pretreatment increased neutrophil migration to the focus of infection, which reduced systemic inflammatory response and bacteremia. The downregulation of CXCR2 and upregulation of G protein-coupled receptor kinase 2 in neutrophils was prevented by pretreatment of diabetic mice given MS with compound 48/80. In addition, blocking the histamine H2 receptor restored neutrophil migration, enhanced CXCR2 expression, decreased bacteremia, and improved sepsis survival in alloxan-induced diabetic and spontaneous NOD mice. Finally, diabetic W/W(v) mice had neutrophil migration to the peritoneal cavity, increased CXCR2 expression, and reduced bacteremia compared with diabetic WB/B6 mice. These results demonstrate that histamine released by MCs reduces diabetic host resistance to septic peritonitis in mice.


Subject(s)
Diabetes Mellitus, Experimental/mortality , G-Protein-Coupled Receptor Kinase 2/metabolism , Mast Cells/immunology , Neutrophils/metabolism , Receptors, Interleukin-8B/metabolism , Alloxan , Animals , Bacteremia/drug therapy , Cell Movement , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/microbiology , Down-Regulation/drug effects , Female , Histamine/metabolism , Histamine H2 Antagonists , Inflammation/drug therapy , Mice , Mice, Inbred BALB C , Mice, Inbred NOD , Receptors, Histamine H2/metabolism , Sepsis/complications , Sepsis/microbiology , Sepsis/mortality , Up-Regulation/drug effects , p-Methoxy-N-methylphenethylamine/pharmacology
9.
Crit Care Med ; 40(9): 2631-7, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22732279

ABSTRACT

OBJECTIVES: To investigate the role of toll-like receptor 9 on sepsis-induced failure of neutrophil recruitment to the site of infection. DESIGN: Prospective experimental study. SETTING: University research laboratory. INTERVENTIONS: Model of polymicrobial sepsis induced by cecal ligation and puncture in wild-type and toll-like receptor 9-deficient mice. MEASUREMENTS AND MAIN RESULTS: Toll-like receptor 9-deficient mice with cecal ligation and puncture-induced severe sepsis did not demonstrate failure of neutrophil migration and consequently had a low systemic inflammatory response and a high survival rate. Upon investigating the mechanism by which toll-like receptor 9 deficiency prevents the failure of neutrophil migration, it was found that neutrophils derived from toll-like receptor 9--deficient mice with cecal ligation and puncture-induced severe sepsis expressed high levels of chemokine C-X-C motif receptor 2 (CXCR2) and had reduced induction of G-protein-coupled receptor kinase 2. CONCLUSIONS: These findings suggest that the poor outcome of severe sepsis is associated with toll-like receptor 9 activation in neutrophils, which triggers G-protein-coupled receptor kinase 2 expression and CXCR2 downregulation. These events account for the reduction of neutrophil migration to the site of infection, with consequent spreading of the infection, onset of the systemic inflammatory response, and a decrease in survival.


Subject(s)
Chemotaxis/physiology , G-Protein-Coupled Receptor Kinase 2/metabolism , Neutrophil Infiltration/physiology , Sepsis/metabolism , Toll-Like Receptor 9/metabolism , Animals , Cell Survival , Disease Models, Animal , Female , Mice , Mice, Inbred C57BL , Random Allocation , Reference Values , Sensitivity and Specificity , Statistics, Nonparametric
10.
Diabetes ; 61(6): 1584-91, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22415874

ABSTRACT

The mechanisms underlying immune deficiency in diabetes are largely unknown. In the present study, we demonstrate that diabetic mice are highly susceptible to polymicrobial sepsis due to reduction in rolling, adhesion, and migration of leukocytes to the focus of infection. In addition, after sepsis induction, CXCR2 was strongly downregulated in neutrophils from diabetic mice compared with nondiabetic mice. Furthermore, CXCR2 downregulation was associated with increased G-protein-coupled receptor kinase 2 (GRK2) expression in these cells. Different from nondiabetic mice, diabetic animals submitted to mild sepsis displayed a significant augment in α1-acid glycoprotein (AGP) hepatic mRNA expression and serum protein levels. Administration of AGP in nondiabetic mice subjected to mild sepsis inhibited the neutrophil migration to the focus of infection, as well as induced l-selectin shedding and rise in CD11b of blood neutrophils. Insulin treatment of diabetic mice reduced mortality rate, prevented the failure of neutrophil migration, impaired GRK2-mediated CXCR2 downregulation, and decreased the generation of AGP. Finally, administration of AGP abolished the effect of insulin treatment in diabetic mice. Together, these data suggest that AGP may be involved in reduction of neutrophil migration and increased susceptibility to sepsis in diabetic mice.


Subject(s)
Cell Movement/immunology , Diabetes Mellitus, Experimental/metabolism , Neutrophil Infiltration/immunology , Neutrophils/immunology , Orosomucoid/metabolism , Sepsis/metabolism , Animals , CD11b Antigen/metabolism , Cell Movement/drug effects , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/immunology , Disease Susceptibility/immunology , Disease Susceptibility/metabolism , Insulin/pharmacology , Insulin/therapeutic use , L-Selectin/metabolism , Mice , Neutrophil Infiltration/drug effects , Neutrophils/drug effects , Neutrophils/metabolism , Sepsis/immunology
11.
Int Immunopharmacol ; 12(4): 603-10, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22366405

ABSTRACT

Several studies have pointed out the immunomodulatory properties of the Salivary Gland Extract (SGE) from Lutzomyia longipalpis. We aimed to identify the SGE component (s) responsible for its effect on ovalbumin (OVA)-induced neutrophil migration (NM) and to evaluate the effect of SGE and components in the antigen-induced arthritis (AIA) model. We tested the anti-arthritic activities of SGE and the recombinant LJM111 salivary protein (rLJM111) by measuring the mechanical hypernociception and the NM into synovial cavity. Furthermore, we measured IL-17, TNF-α and IFN-γ released by lymph nodes cells stimulated with mBSA or anti-CD3 using enzyme-linked immunosorbent assay (ELISA). Additionally, we tested the effect of SGE and rLJM111 on co-stimulatory molecules expression (MHC-II and CD-86) by flow cytometry, TNF-α and IL-10 production (ELISA) of bone marrow-derived dendritic cells (BMDCs) stimulated with LPS, chemotaxis and actin polymerization from neutrophils. Besides, the effect of SGE on CXCR2 and GRK-2 expression on neutrophils was investigated. We identified one plasmid expressing the protein LJM111 that prevented NM in OVA-challenged immunized mice. Furthermore, both SGE and rLJM111 inhibited NM and pain sensitivity in AIA and reduced IL-17, TNF-α and IFN-γ. SGE and rLJM111 also reduced MHC-II and CD-86 expression and TNF-α whereas increased IL-10 release by LPS-stimulated BMDCs. SGE, but not LJM 111, inhibited neutrophils chemotaxis and actin polymerization. Additionally, SGE reduced neutrophil CXCR2 expression and increased GRK-2. Thus, rLJM111 is partially responsible for SGE mechanisms by diminishing DC function and maturation but not chemoattraction of neutrophils.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Arthritis, Experimental/immunology , Insect Proteins/pharmacology , Psychodidae , Salivary Glands/immunology , Salivary Proteins and Peptides/pharmacology , Animals , Cell Movement , Cytokines/immunology , Dendritic Cells/immunology , Female , G-Protein-Coupled Receptor Kinase 2/immunology , Lymph Nodes/cytology , Male , Mice , Mice, Inbred BALB C , Neutrophils/immunology , Ovalbumin/immunology , Receptors, Interleukin-8B/immunology , Recombinant Proteins/pharmacology , Serum Albumin, Bovine/immunology
12.
J Nat Prod ; 74(2): 113-8, 2011 Feb 25.
Article in English | MEDLINE | ID: mdl-21275387

ABSTRACT

Recent in vitro data have suggested that the flavonoid quercetin (1) does not affect the functioning of neutrophils. Therefore, we evaluated in vivo and in vitro whether or not 1 affects neutrophil function, focusing on recruitment. The in vivo treatment with 1 inhibited in a dose-dependent manner the recruitment of neutrophils to the peritoneal cavity of mice induced by known chemotatic factors such as CXCL1, CXCL5, LTB(4), and fMLP. Furthermore, 1 also inhibited in a concentration-dependent manner the chemoattraction of human neutrophils induced by CXCL8, LTB(4), and fMLP in a Boyden chamber. In vitro treatment with 1 did not affect human neutrophil surface expression of CXCR1, CXCR2, BLT1, or FLPR1, but rather reduced actin polymerization. These results suggest that 1 inhibits actin polymerization, hence, explaining the inhibition of neutrophil recruitment in vivo and in vitro and highlighting its possible usefulness to diminish excessive neutrophil migration during inflammation.


Subject(s)
Actins/metabolism , Chemokine CXCL5/immunology , Interleukin-8/drug effects , Leukotriene B4/immunology , N-Formylmethionine Leucyl-Phenylalanine/immunology , Neutrophil Infiltration/drug effects , Neutrophils/drug effects , Quercetin/pharmacology , Actins/drug effects , Animals , Chemotactic Factors/immunology , Chemotaxis/immunology , Dose-Response Relationship, Drug , Humans , Inflammation/immunology , Interleukin-8/immunology , Male , Mice , Molecular Structure , Neutrophil Infiltration/immunology , Neutrophils/immunology , Quercetin/chemistry , Quercetin/immunology
13.
Shock ; 35(1): 17-27, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20823697

ABSTRACT

Sepsis results from an overwhelming response to infection and is a major contributor to death in intensive care units worldwide. In recent years, we and others have shown that neutrophil functionality is impaired in sepsis. This correlates with sepsis severity and contributes to aggravation of sepsis by precluding bacterial clearance. Nitric oxide (NO) is a major contributor to the impairment of neutrophil function in sepsis. However, attempts to inhibit NO synthesis in sepsis resulted in increased death despite restoring neutrophil migration. This could be in part attributed to a reduction of the NO-dependent microbicidal activity of neutrophils. In sepsis, the beneficial effects resulting from the inhibition of soluble guanylyl cyclase (sGC), a downstream target of NO, have long been appreciated but poorly understood. However, the effects of sGC inhibition on neutrophil function in sepsis have never been addressed. In the present study, we show that TLR activation in human neutrophils leads to decreased chemotaxis, which correlated with chemotactic receptor internalization and increased G protein-coupled receptor kinase 2 expression, in a process involving the NO-sGC-protein kinase G axis. We also demonstrate that inhibition of sGC activity increased survival in a murine model of sepsis, which was paralleled by restored neutrophil migratory function and increased bacterial clearance. Finally, the beneficial effect of sGC inhibition could also be demonstrated in mice treated after the onset of sepsis. Our results suggest that the beneficial effects of sGC inhibition in sepsis could be at least in part attributed to a recovery of neutrophil functionality.


Subject(s)
Guanylate Cyclase/metabolism , Neutrophils/metabolism , Sepsis/enzymology , Amidines/pharmacology , Animals , Apoptosis/drug effects , Benzylamines/pharmacology , Blotting, Western , Cells, Cultured , Chemotaxis, Leukocyte/drug effects , Female , Flow Cytometry , Fluorescent Antibody Technique , G-Protein-Coupled Receptor Kinase 2/metabolism , Humans , Lipopolysaccharides/pharmacology , Male , Mice , Mice, Inbred C57BL , Neutrophils/cytology , Neutrophils/drug effects , Nitric Oxide Synthase/antagonists & inhibitors , Peroxidase/metabolism , Sepsis/metabolism , Signal Transduction/drug effects
14.
Am J Respir Crit Care Med ; 183(2): 234-42, 2011 Jan 15.
Article in English | MEDLINE | ID: mdl-20732989

ABSTRACT

RATIONALE: Sepsis is defined as a systemic inflammatory response to infection, which in its severe form is associated with multiple organ dysfunction syndrome (MODS). The precise mechanisms by which MODS develops remain unclear. Neutrophils have a pivotal role in the defense against infections; however, overwhelming activation of neutrophils is known to elicit tissue damage. OBJECTIVES: We investigated the role of the chemokine receptor CCR2 in driving neutrophil infiltration and eliciting tissue damage in remote organs during sepsis. METHODS: Sepsis was induced in wild-type mice treated with CCR2 antagonist (RS504393) or CCR2(-/-) mice by cecal ligation and puncture (CLP) model. Neutrophil infiltration into the organs was measured by myeloperoxidase activity and fluorescence-activated cell sorter. CCR2 expression and chemotaxis were determined in neutrophils stimulated with Toll-like receptor agonists or isolated from septic mice and patients. MEASUREMENTS AND MAIN RESULTS: CCR2 expression and responsiveness to its ligands was induced in circulating neutrophils during CLP-induced sepsis by a mechanism dependent on Toll-like receptor/nuclear factor-κB pathway. Genetic or pharmacologic inhibition of CCR2 protected mice from CLP-induced mortality. This protection was associated with lower infiltration of neutrophils into the lungs, heart, and kidneys and reduced serum biochemical indicators of organ injury and dysfunction. Importantly, neutrophils from septic patients express high levels of CCR2, and the severity of patient illness correlated positively with increasing neutrophil chemotaxis to CCR2 ligands. CONCLUSIONS: Collectively, these data identify CCR2 as a key receptor that drives the inappropriate infiltration of neutrophils into remote organs during sepsis. Therefore, CCR2 blockade is a novel potential therapeutic target for treatment of sepsis-induced MODS.


Subject(s)
Multiple Organ Failure/blood , Neutrophils/metabolism , Receptors, CCR2/blood , Shock, Septic/blood , Animals , Biomarkers/blood , Chemotaxis , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay/methods , Flow Cytometry/methods , Humans , Mice , Mice, Inbred C57BL , Multiple Organ Failure/etiology , Peroxidase/blood , Severity of Illness Index , Shock, Septic/complications , Up-Regulation
15.
Am J Respir Crit Care Med ; 183(7): 922-31, 2011 Apr 01.
Article in English | MEDLINE | ID: mdl-20971829

ABSTRACT

RATIONALE: The reduction of neutrophil migration to the bacterial focus is associated with poor outcome in sepsis. OBJECTIVES: The objective of this study was to identify soluble substances in the blood of septic mice that inhibit neutrophil migration. METHODS: A pool of serum obtained from mice 2 hours after the induction of severe sepsis by cecal ligation and puncture inhibited the neutrophil migration. The proteins with inhibitory activity on neutrophil migration were isolated by Blue-Sepharose chromatography, high-performance liquid chromatography, and electrophoresis, and identified by mass spectrometry. MEASUREMENTS AND MAIN RESULTS: Hemopexin was identified as the serum component responsible for the inhibition of neutrophil migration. In sepsis, the pretreatment of wild-type mice with hemopexin inhibited neutrophil migration to the focus of infection and decreased the survival rate from 87.5 to 50.0%. Hemopexin-null mice subjected to severe sepsis presented normal neutrophil migration, low bacteremia, and an improvement of 40% in survival rate. Moreover, hemopexin inhibited the neutrophil chemotaxis response evoked by C5a or macrophage inflammatory protein-2 and induced a reduction of CXCR2 and L-selectin as well as the up-regulation of CD11b expression in neutrophil membranes. The inhibitory effect of hemopexin on neutrophil chemotaxis was prevented by serine protease inhibitors or ATP. In addition, serum levels of ATP were decreased 2 hours after severe sepsis. CONCLUSIONS: These data demonstrate for the first time the inhibitory role of hemopexin in neutrophil migration during sepsis and suggest that the therapeutic inhibition of hemopexin or its protease activity could improve neutrophil migration to the focus of infection and survival in sepsis.


Subject(s)
Cell Movement/drug effects , Hemopexin/metabolism , Neutrophils/metabolism , Sepsis/metabolism , Sepsis/mortality , Analysis of Variance , Animals , CD11b Antigen/immunology , CD11b Antigen/metabolism , Cell Movement/immunology , Chemotaxis, Leukocyte/immunology , Disease Models, Animal , Down-Regulation , Escherichia coli , Hemopexin/immunology , L-Selectin/metabolism , Mass Spectrometry , Mice , Mice, Inbred Strains , Neutrophils/drug effects , Neutrophils/immunology , Random Allocation , Receptors, Interleukin-8B/immunology , Receptors, Interleukin-8B/metabolism , Sepsis/immunology , Survival Rate , Thioglycolates/pharmacology , Up-Regulation
16.
Ann Rheum Dis ; 69(9): 1697-703, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20472598

ABSTRACT

OBJECTIVES: Interleukin 33 (IL-33) is a new member of the IL-1 family of cytokines which signals via its receptor, ST2 (IL-33R), and has an important role in Th2 and mast cell responses. This study shows that IL-33 orchestrates neutrophil migration in arthritis. METHODS AND RESULTS: Methylated bovine serum albumin (mBSA) challenge in the knee joint of mBSA-immunised mice induced local neutrophil migration accompanied by increased IL-33R and IL-33 mRNA expression. Cell migration was inhibited by systemic and local treatments with soluble (s)IL-33R, an IL-33 decoy receptor, and was not evident in IL-33R-deficient mice. IL-33 injection also induced IL-33R-dependent neutrophil migration. Antigen- and IL-33-induced neutrophil migration in the joint was dependent on CXCL1, CCL3, tumour necrosis factor alpha (TNFalpha) and IL-1beta synthesis. Synovial tissue, macrophages and activated neutrophils expressed IL-33R. IL-33 induces neutrophil migration by activating macrophages to produce chemokines and cytokines and by directly acting on neutrophils. Importantly, neutrophils from patients with rheumatoid arthritis successfully treated with anti-TNFalpha antibody (infliximab) expressed significantly lower levels of IL-33R than patients treated with methotrexate alone. Only neutrophils from patients treated with methotrexate alone or from normal donors stimulated with TNFalpha responded to IL-33 in chemotaxis. CONCLUSIONS: These results suggest that suppression of IL-33R expression in neutrophils, preventing IL-33-induced neutrophil migration, may be an important mechanism of anti-TNFalpha therapy of inflammation.


Subject(s)
Antirheumatic Agents/pharmacology , Arthritis, Rheumatoid/immunology , Interleukins/immunology , Neutrophil Infiltration/immunology , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Animals , Arthritis, Experimental/drug therapy , Arthritis, Experimental/immunology , Arthritis, Rheumatoid/drug therapy , Chemotactic Factors/immunology , Chemotaxis, Leukocyte/immunology , Cytokines/immunology , Gene Expression Regulation/immunology , Humans , Interleukin-1 Receptor-Like 1 Protein , Interleukin-33 , Interleukins/biosynthesis , Interleukins/genetics , Macrophage Activation/immunology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , RNA, Messenger/genetics , Receptors, Interleukin , Synovial Membrane/immunology
17.
Am J Respir Crit Care Med ; 182(3): 360-8, 2010 Aug 01.
Article in English | MEDLINE | ID: mdl-20339148

ABSTRACT

RATIONALE: Recovering the neutrophil migration to the infectious focus improves survival in severe sepsis. Recently, we demonstrated that the cystathionine gamma-lyase (CSE)/hydrogen sulfide (H(2)S) pathway increased neutrophil recruitment to inflammatory focus during sterile inflammation. OBJECTIVES: To evaluate if H(2)S administration increases neutrophil migration to infectious focus and survival of mice. METHODS: Sepsis was induced by cecal ligation and puncture (CLP). MEASUREMENTS AND MAIN RESULTS: The pretreatments of mice with H(2)S donors (NaHS or Lawesson's reagent) improved leukocyte rolling/adhesion in the mesenteric microcirculation as well as neutrophil migration. Consequently, bacteremia levels were reduced, hypotension and lung lesions were prevented, and the survival rate increased from approximately 13% to approximately 80%. Even when treatment was delayed (6 h after CLP), a highly significant reduction in mortality compared with untreated mice was observed. Moreover, H(2)S pretreatment prevented the down-regulation of CXCR2 and l-selectin and the up-regulation of CD11b and G protein-coupled receptor kinase 2 in neutrophils during sepsis. H(2)S also prevented the reduction of intercellular adhesion molecule-1 expression in the endothelium of the mesenteric microcirculation in severe sepsis. Confirming the critical role of H(2)S on sepsis outcome, pretreatment with dl-propargylglycine (a CSE inhibitor) inhibited neutrophil migration to the infectious focus, enhanced lung lesions, and induced high mortality in mice subjected to nonsevere sepsis (from 0 to approximately 80%). The beneficial effects of H(2)S were blocked by glibenclamide (a ATP-dependent K(+) channel blocker). CONCLUSIONS: These results showed that H(2)S restores neutrophil migration to the infectious focus and improves survival outcome in severe sepsis by an ATP-dependent K(+) channel-dependent mechanism.


Subject(s)
Cell Movement/drug effects , Hydrogen Sulfide/pharmacology , KATP Channels/physiology , Neutrophils/drug effects , Sepsis/mortality , Sepsis/pathology , Animals , CD11b Antigen/physiology , Down-Regulation/drug effects , Endothelium, Vascular , Intercellular Adhesion Molecule-1/drug effects , L-Selectin/physiology , Male , Mesentery/blood supply , Mice , Neutrophils/physiology , Receptors, Interleukin-8B/physiology , Up-Regulation/drug effects
18.
Proc Natl Acad Sci U S A ; 106(14): 5954-9, 2009 Apr 07.
Article in English | MEDLINE | ID: mdl-19289819

ABSTRACT

IL-23/IL-17-induced neutrophil recruitment plays a pivotal role in rheumatoid arthritis (RA). However, the mechanism of the neutrophil recruitment is obscure. Here we report that prostaglandin enhances the IL-23/IL-17-induced neutrophil migration in a murine model of RA by inhibiting IL-12 and IFN gamma production. Methylated BSA (mBSA) and IL-23-induced neutrophil migration was inhibited by anti-IL-23 and anti-IL-17 antibodies, COX inhibitors, IL-12, or IFNgamma but was enhanced by prostaglandin E(2) (PGE(2)). IL-23-induced IL-17 production was increased by PGE(2) and suppressed by COX-inhibition or IL-12. Furthermore, COX inhibition failed to reduce IL-23-induced neutrophil migration in IL-12- or IFNgamma-deficient mice. IL-17-induced neutrophil migration was not affected by COX inhibitors, IL-12, or IFNgamma but was inhibited by MK886 (a leukotriene synthesis inhibitor), anti-TNFalpha, anti-CXCL1, and anti-CXCL5 antibodies and by repertaxin (a CXCR1/2 antagonist). These treatments all inhibited mBSA- or IL-23-induced neutrophil migration. IL-17 induced neutrophil chemotaxis through a CXC chemokines-dependent pathway. Our results suggest that prostaglandin plays an important role in IL-23-induced neutrophil migration in arthritis by enhancing IL-17 synthesis and by inhibiting IL-12 and IFNgamma production. We thus provide a mechanism for the pathogenic role of the IL-23/IL-17 axis in RA and also suggest an additional mechanism of action for nonsteroidal anti-inflammatory drugs.


Subject(s)
Arthritis, Rheumatoid/pathology , Inflammation/metabolism , Interferon-gamma/antagonists & inhibitors , Interleukin-12/antagonists & inhibitors , Interleukin-17/immunology , Interleukin-23/immunology , Neutrophil Infiltration/immunology , Prostaglandins/physiology , Animals , Cyclooxygenase Inhibitors/pharmacology , Dinoprostone/pharmacology , Interleukin-17/biosynthesis , Mice
19.
Proc Natl Acad Sci U S A ; 106(10): 4018-23, 2009 Mar 10.
Article in English | MEDLINE | ID: mdl-19234125

ABSTRACT

Patients with sepsis have a marked defect in neutrophil migration. Here we identify a key role of Toll-like receptor 2 (TLR2) in the regulation of neutrophil migration and resistance during polymicrobial sepsis. We found that the expression of the chemokine receptor CXCR2 was dramatically down-regulated in circulating neutrophils from WT mice with severe sepsis, which correlates with reduced chemotaxis to CXCL2 in vitro and impaired migration into an infectious focus in vivo. TLR2 deficiency prevented the down-regulation of CXCR2 and failure of neutrophil migration. Moreover, TLR2(-/-) mice exhibited higher bacterial clearance, lower serum inflammatory cytokines, and improved survival rate during severe sepsis compared with WT mice. In vitro, the TLR2 agonist lipoteichoic acid (LTA) down-regulated CXCR2 expression and markedly inhibited the neutrophil chemotaxis and actin polymerization induced by CXCL2. Moreover, neutrophils activated ex vivo by LTA and adoptively transferred into naïve WT recipient mice displayed a significantly reduced competence to migrate toward thioglycolate-induced peritonitis. Finally, LTA enhanced the expression of G protein-coupled receptor kinases 2 (GRK2) in neutrophils; increased expression of GRK2 was seen in blood neutrophils from WT mice, but not TLR2(-/-) mice, with severe sepsis. Our findings identify an unexpected detrimental role of TLR2 in polymicrobial sepsis and suggest that inhibition of TLR2 signaling may improve survival from sepsis.


Subject(s)
Cell Movement , Neutrophils/cytology , Receptors, Interleukin-8B/metabolism , Sepsis/immunology , Sepsis/microbiology , Toll-Like Receptor 2/metabolism , Animals , Cell Movement/drug effects , Chemotaxis/drug effects , Down-Regulation/drug effects , G-Protein-Coupled Receptor Kinase 2/metabolism , Gene Expression Regulation/drug effects , Immunity, Innate/drug effects , Lipopolysaccharides/administration & dosage , Lipopolysaccharides/pharmacology , Mice , Neutrophils/drug effects , Neutrophils/enzymology , Peritonitis/complications , Receptors, Interleukin-8B/genetics , Sepsis/complications , Signal Transduction/drug effects , Survival Analysis , Teichoic Acids/administration & dosage , Teichoic Acids/pharmacology , Toll-Like Receptor 2/agonists , Toll-Like Receptor 2/deficiency
20.
J Immunol ; 181(6): 4287-98, 2008 Sep 15.
Article in English | MEDLINE | ID: mdl-18768887

ABSTRACT

In this study, we have addressed the role of H(2)S in modulating neutrophil migration in either innate (LPS-challenged naive mice) or adaptive (methylated BSA (mBSA)-challenged immunized mice) immune responses. Treatment of mice with H(2)S synthesis inhibitors, dl-propargylglycine (PAG) or beta-cyanoalanine, reduced neutrophil migration induced by LPS or methylated BSA (mBSA) into the peritoneal cavity and by mBSA into the femur/tibial joint of immunized mice. This effect was associated with decreased leukocyte rolling, adhesion, and P-selectin and ICAM-1 expression on endothelium. Predictably, treatment of animals with the H(2)S donors, NaHS or Lawesson's reagent, enhanced these parameters. Moreover, the NaHS enhancement of neutrophil migration was not observed in ICAM-1-deficient mice. Neither PAG nor NaHS treatment changed LPS-induced CD18 expression on neutrophils, nor did the LPS- and mBSA-induced release of neutrophil chemoattractant mediators TNF-alpha, keratinocyte-derived chemokine, and LTB(4). Furthermore, in vitro MIP-2-induced neutrophil chemotaxis was inhibited by PAG and enhanced by NaHS treatments. Accordingly, MIP-2-induced CXCR2 internalization was enhanced by PAG and inhibited by NaHS treatments. Moreover, NaHS prevented MIP-2-induced CXCR2 desensitization. The PAG and NaHS effects correlated, respectively, with the enhancement and inhibition of MIP-2-induced G protein-coupled receptor kinase 2 expression. The effects of NaHS on neutrophil migration both in vivo and in vitro, together with CXCR2 internalization and G protein-coupled receptor kinase 2 expression were prevented by the ATP-sensitive potassium (K(ATP)(+)) channel blocker, glybenclamide. Conversely, diazoxide, a K(ATP)(+) channel opener, increased neutrophil migration in vivo. Together, our data suggest that during the inflammatory response, H(2)S augments neutrophil adhesion and locomotion, by a mechanism dependent on K(ATP)(+) channels.


Subject(s)
Adjuvants, Immunologic/pharmacology , Cell Adhesion Molecules/biosynthesis , Endocytosis/immunology , Gene Expression Regulation/immunology , Hydrogen Sulfide/pharmacology , KATP Channels/physiology , Neutrophil Infiltration/immunology , Receptors, Interleukin-8B/antagonists & inhibitors , Adjuvants, Immunologic/biosynthesis , Animals , Cattle , Cell Adhesion Molecules/deficiency , Cell Adhesion Molecules/genetics , Endocytosis/drug effects , Gene Expression Regulation/drug effects , Hydrogen Sulfide/metabolism , Immunity, Innate/drug effects , Immunity, Innate/genetics , Lipopolysaccharides/pharmacology , Male , Methylation/drug effects , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Neutrophil Infiltration/drug effects , Receptors, Interleukin-8B/metabolism , Serum Albumin, Bovine/administration & dosage , Serum Albumin, Bovine/immunology , Serum Albumin, Bovine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL